
Money Cannot Buy Everything: Trading Mobile
Data with Controllable Privacy Loss

Shuyuan Zheng
Graduate School of Informatics

Kyoto University
Kyoto, Japan

caryzheng@db.soc.i.kyoto-u.ac.jp

Yang Cao
Graduate School of Informatics

Kyoto University
Kyoto, Japan

yang@i.kyoto-u.ac.jp

Masatoshi Yoshikawa
Graduate School of Informatics

Kyoto University
Kyoto, Japan

yoshikawa@i.kyoto-u.ac.jp

Abstract—As personal data have been the new oil of the digital
era, there is a growing trend perceiving personal data as a
commodity. Existing studies have built theories on how to map
the privacy loss to an arbitrage-free price. It is assumed that a
data buyer could purchase arbitrarily accurate results as long
as she could compensate data owners’ privacy loss. However, it
may not be true in reality since our recent survey reveals that
most of the data owners valued privacy more than money. In this
paper, we study how to empower data owners with the control
of privacy loss when continuously trading their personal mobile
data. Specifically, we propose a framework for trading infinite
streaming mobile data that enables each data owner to bound
her privacy loss in any w sliding window. Introducing such upper
bounds of privacy loss makes the existing trading frameworks
invalid and raises new technical challenges in the aspects of
budget allocation and arbitrage-free pricing. To address these
problems, we propose a modularized trading framework with
instances that allow data owners to personalize their privacy
loss while the price is still arbitrage-free. Finally, we conduct
experiments to verify the effectiveness of the proposed protocols.

Index Terms—personal data trading, controllable privacy loss,
personalized differential privacy, budget allocation, arbitrage-
free pricing

I. INTRODUCTION

Personal data, the new oil of the digital era, are extraordi-
narily valuable for individuals and organizations to discover
knowledge and improve products or services. While a single
individual’s personal information is worth nothing in practice,
its aggregate can be worth billions [1]. However, since per-
sonal data may also release sensitive information which can be
used to identify individuals for crimes, individuals also deserve
appropriate compensations due to their potential privacy loss.
In particular, a study found that a compensation, especially
monetary one, reduces people’ expectations for privacy pro-
tection [2], which implies that some individuals would like
to provide personal data in exchange of money. In fact, there
is a growing trend towards personal data trading perceiving
personal data as a commodity, which meets the demand of both
data buyers (i.e., who want to utilize personal data) and data
owners (i.e., who generate the data). Some startup companies,
such as Datacoup1 and CitizenMe2, consider personal data

1http://datacoup.com/
2https://citizenme.com/

trading platform that connects data owners and data buyers
directly as a new business model. This model allows data
owners to trade off privacy loss for money, which benefits
personal data sharing and utilization.

Fig. 1. Query-based Data Trading

Several studies [3]–[8] in the literature investigated privacy-
preserving query-based data trading as shown in Figure 1.
There are three parties in the data marketplace: data owners,
data buyers, and a market maker. Data owners contribute
their personal data and get monetary compensations from the
market maker in return. Data buyers request queries over the
data and pay for perturbed query answers, i.e., noisy versions
of aggregate statistical results where some random noises are
injected. The market maker acts as a trustworthy intermediary
between data owners and data buyers, in charge of computing
perturbed query answers, setting query price for data buyers
and compensating data owners. A major challenge in the line
of works is how to price a query answer. A seminal work
of Li et al. [6] assigned query prices to queries according
to their utility. They designed pricing functions by making the
connection between privacy loss and the utility, and formulated
an important property of pricing functions: arbitrage-freeness,
which means the consistency of a set of priced queries.
Intuitively, a buyer should not obtain the answer to a query
by deriving this answer from a less expensive set of queries.

Problems of Previous Works

However, the previously proposed data markets did not give
the power to data owners to control their privacy loss in con-
tinuous data trading. Concretely, there are several desiderata in
a personal data market that have not been well studied. First,
data owners should be able to specify the upper bound of the

privacy loss given the high sensitivity of mobile data such as
location trajectories. In the traditional data marketplace shown
in Figure 1, a data buyer even can purchase query answers with
arbitrary accuracy (theoretically, it is equivalent to purchase
the raw data) as long as she could appropriately pay for it.
However, our recent survey [9] reveals that most of the data
owners valued privacy or other criteria more important than
the financial compensation when monetizing their data, which
supports our argument that money cannot buy everything.
Second, in the data trading, each data owner should be able to
choose personalized privacy loss bound she like; however, the
existing studies [3] [6] [7] enforce a uniform privacy loss for
all data owners. Third, existing studies mainly focus on trading
static personal data; however, a large amount of personal data,
such as streaming mobile data, are generated continuously.

Challenges

In this paper, we study how to empower data owners with
the control of privacy loss when continuously trading their
personal mobile data. There are three challenges in solving
the problems mentioned above.

First, bounding the privacy loss indicates restricting the
maximum supply of utility in a data marketplace. There is
no framework in the existing studies for arbitrage-free pricing
under utility constraints. This lead to a new and challenging
problem: how to price query answers based on their utility in
an arbitrage-free manner.

Second, personalized privacy losses make it more difficult
to design an arbitrage-free pricing function. As query price
depends on the utility of query answer while the cost of the
answer (i.e., the compensations to data owners) is decided by
privacy losses, we design a cost-covering pricing function by
establishing a one-to-one connection between the utility and
privacy losses. Under uniform privacy losses, higher privacy
losses means better utility; thus, such a one-to-one connection
always exists and can even naturally fit the requirements of
arbitrage-free pricing. However, under personalized privacy
losses, the connection might be one-to-many; otherwise, it
might be too complex to express it in analytic form, study the
mathematical properties of both itself and its corresponding
pricing function, and improve it to guarantee arbitrage-free
pricing. Although we can leverage personalized differential
privacy (PDP) [10] to realize personalized privacy losses, no
existing work has studied arbitrage-free pricing under PDP
techniques, which is a non-trivial challenge.

Third, trading infinite streaming mobile data brings more
complexity to arbitrage-free pricing. As the market maker
should protect every trajectory, the task of privacy budget
allocation raises, concerning not only the privacy losses at
a single time-point, but also on the timeline. Although w-
event privacy [11] and some budget allocation techniques
have been proposed to protect sensitive information revealed
from multiple time-points, the problem of how to design an
arbitrage-free pricing function with constraints from both w-
event privacy and PDP are extremely complicated.

Contributions

In this paper, for the first time, we study how to design a
personal data trading framework that empowers data owners
with the control of privacy loss. Our main contributions are
summarized as follows.

First, we design a mobile data trading framework with three
main steps in the protocol: Offer, Quote, and Delivery, to
match the supply (i.e., bounded privacy loss from data owners)
and demand (i.e., utility requirement from data buyers) in a
data market. The major challenge is how to ensure arbitrage-
free under bounded utility. Essentially, it requires the market
maker to derive the privacy loss given a required utility (i.e.,
variance), which is non-trivial if the differentially private
mechanism is complicated or the privacy loss is personalized.
We present a general method to design an arbitrage-free
pricing function based on the inverse function of the utility
function of query answers, and propose a method to adjust
the given privacy budgets from data owners so that to make
the pricing function arbitrage-free.

Second, we develop a principled way to instantiate the
protocol of our trading framework. Specifically, we propose
a general theorem (Theorem 3.1) presenting that if the utility
function of query answers satisfies certain properties, it will re-
sult in an arbitrage-free pricing function. This theorem guides
the design of the protocol for our framework centering around
arbitrage-free pricing. Based on this theorem, we transform
the problem of designing an arbitrage-free pricing function
into finding a utility function satisfying such properties.

Third, we propose two arbitrage-free trading protocols
by instantiating three key modules in our framework. We
transform the problem of designing an arbitrage-free pricing
function into an optimization function. Then, for our advanced
protocol, we design a privacy budget allocation algorithm with
a pre-processing algorithm solving this optimization problem,
in order to guarantee arbitrage-free pricing. Our experimental
results verify the effectiveness of our advanced protocol.

The rest of this paper is organized as follows. Section 2
introduces some basic settings. Section 3 gives a whole view
of our trading framework. Section 4 discusses the technical
details in the modules of our framework. Section 5 presents
the experimental results. Section 6 introduces the related work
and finally Section 7 draws a conclusion.

II. PROBLEM FORMULATION

In this section, we introduce the basic settings of our mobile
data marketplace and outline our design goals in the end.

A. Preliminaries

Trajectory data stream.: At every time-point τ , data owners
contribute a trajectory database Dτ with n rows, where each
row (a trajectory data point) corresponds to a unique data
owner and Dτ [i] ∈ {1, ..., d} represents data owner ui’s
location ID number at the time-point τ . A trajectory data
stream S = (D1, D2, ...) is an infinite sequence of trajectory
databases. A stream prefix St = (D1, ..., Dt) is the prefix of
S, where variable t ∈ [τ] is an index of time-point. We note

that τ denotes the most recent time-point and Dτ denotes the
most recently released trajectory database.

Histogram query: In our settings, a data buyer can request
an histogram query Qτ over the trajectory database Dτ . A
trajectory database Dτ can be transformed into the raw query
answer qτ = (qτ1 , ..., q

τ
d)T where the element qτl is the total

number of data owners who was in the location of ID l at the
time-point τ .

Personalized differential privacy (PDP): To preserve data
owners’ privacy, the raw query answer cannot be returned
to the buyer and the market maker should perturb it by
some perturbation mechanism M achieving a formal privacy
standard. Since data owners are allowed to set upper bound of
individual privacy loss in our settings, we deploy personalized
differential privacy (a variation of differential privacy [12]),
where each data owner ui corresponds to a personalized
privacy protection level, i.e., a privacy loss εi. [10] proposed
Sample Mechanism to achieve PDP, and showed that Laplace
Mechanism [12] can also be used to achieve it but result in
uniform privacy losses.

Definition 2.1 (Personalized Differential Privacy [10]):
Given a privacy specification Φ = [ε1, ..., εn], a perturbation
mechanism M : D → Rd (d ∈ Z+) satisfies Φ-personalized
differential privacy, if for any pair of neighboring databases
D,D′ ⊂ D, with D

ui∼ D′, and for any possible output
o ∈ Rd, we have: Pr[M(D) = o] ≤ eεiPr[M(D′) = o].

Two databases D,D′ ⊂ D are neighboring if D′ can be
derived from D by replacing one row with another, denoted
as D ∼ D′. We write D

ui∼ D′ to denote D and D′ are
neighboring and differ on the value of D[i], i.e., data owner
ui’s location.

Utility metric: We need a utility metric to evaluate perturbed
query answers, i.e., histogram variance v. A perturbed query
answer q̃τ is a vector where each element q̃τl represents the
sum of data owners in the location of ID l at time-point
τ . The histogram variance of q̃τ should be always no less
than the maximum variance among all the element in q̃τ ,
i.e., v ≥ maxl V ar(q̃

τ
l). Variance has been used as utility

metric in several privacy-preserving data marketplaces [6]–[8]
since it reflects the expected dispersion of a random variable,
i.e., perturbed query answer in our cases. We use histogram
variance because our query answers are vectors rather than
scalars and it provides a worst-case guarantee for all elements
in a vector.

B. Market Setup

There are three parties of participants in our marketplace:
data owners, data buyers, and a market maker (who acts
as a trustworthy intermediary between data owners and data
buyers). Each party has its own interests and goals.

Data owners are the source of trajectory data stored in
the marketplace. Each data owner ui should specify her own
privacy loss bound ε̂i (i.e., the maximum privacy loss ε̂i she
can tolerate at every wi successive time-points), and also the
sliding window size wi.

Data buyers can request a histogram query Qτ (where τ
is the most recent time-point) over the database Dτ with a
specific utility (i.e., the histogram variance v) until Dτ+1 is
released, and get a perturbed query answer q̃τ = Qτ (Dτ , v)
such that v = maxl V ar(q̃

τ
l). For simplicity, we assume

there is only one query Qτ for every time-point τ ; however,
our techniques support multiple queries at a single time-
point because we can easily combine privacy losses together
according to the Composition theorem of PDP [10].

The market maker and data owners. For preserving data
owners’ privacy, the market maker is in charge of perturbing
the raw query answer by some perturbation mechanism M
which satisfies personalized differential privacy (PDP, see
Definition 2.1). Since PDP only protects a single trajectory
database over the entire stream, we present personalized W-
event privacy (see Definition 2.2) based on PDP [10] and w-
event privacy [11] to guarantee that the privacy loss of each
data owner’s wi successive data points is not exceeding ε̂i.

Definition 2.2 (Φ-Personalized W-event Privacy (PWP)):
Given a privacy specification Φ = [ε1, ..., εn], a window spec-
ification W = [w1, ..., wn], a mechanism M taking a stream
prefix as input satisfies Φ-personalizedW-event privacy, if for
any pair of wi-neighborbing stream prefixes Sτ , Sτ ′, with any
pair of their neighboring elements Sτ [t]

ui∼ Sτ ′[t], t ∈ [τ], any
τ , and for possible output o, we have:

Pr[M(Sτ) = o] ≤ eεiPr[M(Sτ ′) = o]

Two stream prefixes Sτ , Sτ ′ are wi-neighboring if:

1) there are at most wi pairs of such neighboring databases
Sτ [t], Sτ ′[t], t ∈ [τ], and

2) if two databases Sτ [t], Sτ ′[t] are not neighboring, then
Sτ [t] = Sτ ′[t], and

3) all the neighboring pairs are in a wi-length window.

Contract between each data owner and the market maker.
The market maker should compensate data owners according
to their privacy losses. To join the marketplace, each data
owner ui should make a contract with the market maker
that the latter is obligated to compensate the former by a
compensation function µi. Let ετi be the data owner ui’s
privacy loss due to the perturbed query answer q̃τ . Each
owner’s compensation µi(ετi) = ci · ετi depends on her privacy
loss ετi where ci > 0 is a constant compensation rate stipulated
in the contract.

The market maker and the buyer. As a profit-making
intermediary, the market maker sells perturbed histogram
queries to make profit. In our settings, the price of a query
answer depends directly on its histogram variance v, rather
than on any individual privacy loss it causes, because data
buyers care the utility of query answers more. The market
maker should design a pricing function π = Π(v) which is: (1)
cost-covering, which means query price should cover the total
compensations to data owners, and (2) arbitrage-free, which
means a buyer cannot obtain a perturbed query answer with a
specific histogram variance v more cheaply by deriving a new
answer from a less expensive set of perturbed query answers.

Definition 2.3 (Cost-covering): A pricing function π = Π(v)
(v > 0) is cost-covering, if it satisfies the following property:
for any perturbed query answer q with a histogram variance
v which causes privacy loss εi for each data owner ui, we
always have π = Π(v) =

∑
i µi(εi).

We note that we make the price equal to the total compen-
sations for simplicity, but our techniques also can support the
pricing function which covers a profit.

Definition 2.4 (Arbitrage-freeness): A pricing function π =
Π(v) is arbitrage-free, if it satisfies the following property:
for every multiset V = {v1, ..., vm} where m ∈ Z+, if there
exists a1, ..., am such that

∑m
j=1 aj = 1 and

∑m
j=1 a

2
jvj ≤ v,

we always have Π(v) ≤
∑m
j=1 Π(vj).

Goals. We summarize design goals for each party:
• Data owners. We try to consume their privacy losses

within their privacy loss bounds as much as possible, so
that they can gain more compensations.

• Data buyers. Because individual privacy loss εi has a
upper bound ε̂i for each data owner ui, the histogram
variance v also has a lower bound. Thus, a data buyer
may fail to purchase a query answer with a very low his-
togram; one of our design goals is to lower such a lower
bound for data buyers to make more queries answerable.
Besides, we also try to raise the cost-performance, i.e.,
to lower query price for the same histogram variance.

• The market maker. The pricing function should be
arbitrage-free and cost-covering.

III. MOBILE DATA TRADING FRAMEWORK

In this section, first we give a whole view of our mobile
data trading framework. Then, we discuss more details about
arbitrage-free pricing and three key modules in our framework.
In a nutshell, we provides a framework to compute arbitrage-
free trading protocols. Some important notations are summa-
rized in Table I.

Fig. 2. Transaction Flow in our Trading Framework

A. Framework Overview

After the release of Dτ , a transaction of query answer in
our data marketplace works as depicted in Figure 2. Before
every transaction, the market marker should run two budget
allocation modules briefly introduced as follows:
• BudgetAlloc (budget allocation): it allocates privacy bud-

gets [ε̂τ1 , ..., ε̂
τ
n], with the goals of not only making full

use of data owners’ privacy losses within their privacy
loss bounds but also making more queries answerable.

TABLE I
SUMMARY OF NOTATIONS

Notation Description
ui data owner i
n total number of users
t index of time-point
τ the most recent time-point
Dτ trajectory database collected at τ
Qτ histogram query over Dτ

q̃τ perturbed query answer to Qτ

vτ histogram variance of q̃τ

v̌τ lower bound of vτ

ε̂i ui’s privacy loss bound
ε̂τi ui’s privacy budget for Qτ

ε̄τi ui’s adjusted privacy budget for Qτ

ετi ui’s privacy loss for Qτ

µi(·) ui’s compensation function
M perturbation mechanism

v = UM([ε1, ..., εn]) utility function
π = ΠM(v) pricing function

We note that a privacy budget is the budget of privacy
loss for a single time-point while a privacy loss bound is
for multiple time-points.

• BudgetAdjusting (budget adjusting): it adjusts privacy
budgets to adjusted privacy budgets [ε̄τ1 , ..., ε̄

τ
n] in order

to guarantee arbitrage-free pricing. We will discuss why
we need to adjust privacy budgets in Section III-B. We
note that each data owner’s adjusted privacy budget ε̄τi
should be no more than privacy budget ε̂τi .

Once the adjusted privacy budgets are computed, the market
maker starts to monitor query requests and trade perturbed
query answers in the following steps.

Offer: In Step 1, a data buyer requests a query Qτ over
the database Dτ . Then in Step 2, the market maker will
the maximum utility to the buyer, i.e., the lower bound v̌τ

of histogram variance. Here we define the utility function
of query answers perturbed by M as v = UM([ε1, ..., εn])
which takes as input a vector of privacy losses (or budgets)
and outputs the histogram variance v. The v̌τ depends on the
adjusted privacy budgets ε̄τi , i.e., v̌τ = UM([ε̄τ1 , ..., ε̄

τ
n]).

Quote: In Step 3, given the lower bound v̌τ , the buyer
should choose a histogram variance vτ ≥ v̌τ . Then in Step 4,
the market maker quotes a price πτ for a perturbed query
answer q̃τ = Qτ (Dτ , vτ) by an arbitrage-free and cost-
covering pricing function π = Π(v).

Delivery: In Step 5, the buyer pays the price πτ to the
market maker. Then in Step 6, the market maker calculates
each owner’s privacy loss ετi for vτ , computes a perturbed
query answer q̃τ = M(Dτ , [ετ1 , ..., ε

τ
n]), returns q̃τ to the

buyer, and compensates each data owner according to her
privacy loss. Each data onwer’s privacy loss ετi really con-
sumed should be no more than the adjusted privacy budget

ε̄τi because the latter is the budget of the former. We note
that a perturbation mechanism M is an instance of module
PerturbMech which achieves personalized differential privacy.
Thus we have three key modules: PerturbMech, BudgetAlloc,
and BudgetAdjusting.

B. Arbitrage-free Pricing under Utility Constraints

In Section III-B, we discuss in detail the design of arbitrage-
free pricing in our framework. Since pricing is the most
important issue in a marketplace, it guides the design of our
key modules. Before the discussion of how we can guarantee
arbitrage-free pricing in our framework, we introduce how we
design a pricing function.

Inverse function: Remind that in Step 6, given a histogram
variance vτ , the market maker should calculate the correspond-
ing privacy losses [ετ1 , ..., ε

τ
n], and run M(Dτ , [ετ1 , ..., ε

τ
n])

to compute a perturbed query answer . The question raises
how to calculate the corresponding privacy losses given a
histogram variance, which can be transformed into the problem
of finding the mapping from the set of histogram variance to
the set of privacy losses. In fact, because the utility function
v = UM([ε1, ..., εn]) actually is a mapping from the set of
privacy losses to the set of histogram variance, the inverse
function of the utility function, i.e., UM−1, is the mapping we
need. Thus, we guarantee that UM−1 so that we can derive
the corresponding privacy losses.

To design the pricing function by the inverse function:
Given the inverse function [ε1, ..., εn] = UM

−1(v), the design
of the pricing function has an anchor point, i.e., compensations
to data owners. Remind that the pricing function should be
cost-covering, i.e., π = ΠM(v) ≥

∑
i ci · εi. The direct way

of designing the pricing function is to make query price equal
to the sum of compensations. Thus, we can derive a cost-
covering pricing function as π = ΠM(v) =

∑
i ci · εi =

[c1, ..., cn] · [ε1, ..., εn] = [c1, ..., cn] · UM−1(v). We note that
if the market maker is profit-making, she can modify the
pricing function by adding a profit, e.g., π = ΠM(v) =
(1 + r)[c1, ..., cn] ·UM−1(v) where r > 0 is a flat profit rate;
we employ π = ΠM(v) = [c1, ..., cn]·UM−1(v) for simplicity
but our techniques support the former cases.

To make the inverse function existent: The inverse function
under a simple perturbation mechanism such as Laplace Mech-
anism [12] could be easy to derive. However, it may not exist
for a sophisticated mechanism such as Sample Mechanism
[10]. To guarantee the existence of UM−1, first we introduce
the notion ρ-Pattern to constrain the domain of the utility
function’s input. Intuitively, the inverse function does not exist
because an output of the utility function corresponds multiple
inputs. Hence, we can constrain the domain to rule out those
redundant inputs, so that there is a bijection between the sets
of histogram variance and privacy losses.

Definition 3.1 (ρ-Pattern): A pattern is a vector ρ =
[ρ1, ..., ρn] where 0 ≤ ρi ≤ 1 for all i and ∃j such that ρj = 1.
If a vector [ε1, ..., εn] = ρ ·maxi εi, then we say the vector is
in ρ-pattern. We also use εmax to denote maxi εi.

With the introduction of ρ-Pattern, we can use a fixed pattern
ρ to constrain the domain of the utility function so that every
input [ε1, ..., εn] is in ρ-pattern, i.e., [ε1, ..., εn] = ρ · εmax.
That also means, for every time-point τ , privacy budgets or
privacy losses should be in a fixed ρ-pattern, which makes
UM([ε1, ..., εn]) = UM(ρ · εmax); otherwise, privacy budgets
should be adjusted to fit in ρ-pattern. For example, at time-
point 1, the market maker allocates adjusted privacy budgets
[ε̄11, ε̄

1
2, ε̄

1
3] = [4, 2, 2] and the buyer consumes privacy losses

[ε11, ε
1
2, ε

1
3] = [2, 1, 1]; at time-point 2, [ε̄11, ε̄

2
2, ε̄

2
3] = [6, 3, 3]

and [ε21, ε
2
2, ε

2
3] = [4, 2, 2]; all those privacy budgets and losses

are in [1, 0.5, 0.5]-pattern. Then we guarantee the existence of
UM

−1(v) by finding a ρ such that UM(ρ · εmax) decreases as
εmax increases, which is also implied by the first property in
Theorem 3.1.

To guarantee arbitrage-free pricing by pattern: Now we
can derive a pricing function as follows:

π = ΠM(v) = [c1, ..., cn] · UM−1(v) = [c1, ..., cn] · ρ · εmax

However, under some perturbation mechanismsM, the utility
functions are so complex that the inverse functions even cannot
be expressed in analytic form, which makes it difficult to
analyze the mathematical properties of the pricing functions
and then guarantee arbitrage-free pricing. To solve this prob-
lem, considering whether we can study the properties of the
utility function UM(ρ · εmax) instead of ΠM to guarantee
arbitrage-free pricing, we propose Theorem 3.1 illustrating that
if UM(ρ · εmax) satisfies some properties, then π = ΠM(v)
will be arbitrage-free.

Theorem 3.1: Given a pattern ρ, the pricing function π =
ΠM(v) is arbitrage-free, if the utility function v = UM(ρ ·
εmax) satisfies the following properties:

1) decreasing, which means ∀εmax > 0, UM′(ρ · εmax) <
0;

2) ∀εmax > 0, UM(ρ · εmax) ·UM′′(ρ · εmax) ≤ 2[UM
′(ρ ·

εmax)]2;
3) limεmax→0+ UM(ρ · εmax) = +∞.

where UM
′(ρ · εmax) and UM

′′(ρ · εmax) are the first and
second order derivatives of εmax, correspondingly.

Thus, we can transform the problem of designing an
arbitrage-free pricing function into find a utility function satis-
fying such properties. Intuitively, the first property makes the
pricing function decreasing; the second guarantees a smooth
decreasing speed; the third means a zero price corresponds
to infinitely high variance. We note that, the choice of ρ is
essentially the key to arbitrage-free pricing because the pattern
ρ tunes the properties of the utility function v = UM(ρ·εmax).
The proofs of our theorems can be checked in [13].

C. Key Modules

Now we start to discuss the design of three key modules in
our framework depicted densely in Alg. 1, and why we need
them. Because we should guarantee arbitrage-free pricing by
the sufficient condition proposed in Theorem 3.1, this theorem
certainly guides our design.

Algorithm 1 Trading with Controllable Privacy Loss
Input: privacy specification Φ = [ε̂1, ..., ε̂n], window specification
W = [w1, ..., wn], compensation rates [c1, ..., cn].

1: τ ← 1;
2: while True do
3: [ε̂τ1 , ..., ε̂

τ
n]← BudgetAlloc();

4: [ε̄τ1 , ..., ε̄
τ
n], ρ← BudgetAdjusting([ε̂τ1 , ..., ε̂

τ
n]);

5: while not (Dτ+1 is released) do
6: Receive a query request Qτ ;
7: Compute the lower bound v̌τ = UM([ε̄τ1 , ..., ε̄

τ
n]);

8: Receive a histogram variance vτ ;
9: if vτ < v̌τ then

10: Reject Qτ ;
11: else
12: Quote the buyer π = ΠM(vτ);
13: Collect the buyer’s payment.
14: Calculate privacy losses: [ετ1 , ..., ε

τ
n]← UM

−1(vτ);
15: Compensate µi(ετi) to each data owner ui;
16: Compute q̃τ ← PerturbMech(Dτ , [ετ1 , ..., ε

τ
n]);

17: Return back to the buyer the perturbed query answer q̃τ ;
18: [ε̄τ1 , ..., ε̄

τ
n]← [ε̄τ1 , ..., ε̄

τ
n]− [ετ1 , ..., ε

τ
n];

19: end if
20: end while
21: τ ← τ + 1;
22: end while

Before trading perturbed query answers over D1, the market
maker should make a contract with each data owner ui to
stipulate: the compensation rate ci , the privacy loss bound ε̂i,
and the sliding window size wi. Then, two specifications which
control the privacy protection level of personalized W-event
privacy (PWP) are derived: (1) the privacy specification Φ =
[ε̂1, ..., ε̂1], (2) the window specification W = [w1, ..., wn].
Besides, the market maker should decide which instances of
three key modules to deploy.

PerturbMech: It is the module aiming at perturbing query
answers to achieve PWP. Although our framework should
satisfy PWP, perturbation mechanisms satisfying personalized
differential privacy (PDP) can be used as instances of Per-
turbMech. That is, we propose Theorem 3.2 by which we can
safely deploy perturbation mechanisms MΦτ satisfying Φτ -
PDP at every time-point τ to achieve Φ-personalizedW-event
privacy on the whole timeline. Hence, the task of achieving
PWP on the timeline can be transformed into achieving PDP
at every time-point.

Theorem 3.2 (Achieving PWP by PDP): LetMΦ1
, ...,MΦτ

be a set of perturbation mechanisms where each independent
sub-mechanism MΦt satisfies Φt-personalize differential pri-
vacy (where Φt = [εt1, ..., ε

t
n]), andMΦt(D

t) = ot. LetM be
a mechanism which takes a stream prefix Sτ = (D1, ..., Dτ)
as input and outputs (M1(D1), ...,Mτ (Dτ)). Then,M satis-
fies Φ-personalized W-event privacy (where Φ = [ε̂1, ..., ε̂n])
if for any t ∈ [τ] and any ui, we have

∑t
j=t−wi+1 ε

j
i ≤ ε̂i

Besides, an instance of PerturbMech should guarantee the
third property in Theorem 3.1. Intuitively, this property re-
quires that, intuitively, if data owners suffer no privacy loss,
the utility should be infinitely bad. Since whether this property
can be satisfied naturally depends on the choice of perturbation
mechanism M and the choice of utility metric, we should

carefully design or select a perturbation mechanism M not
only achieving PDP, but also guaranteeing this property.

BudgetAlloc: This module is designed for making full use
of privacy losses for data owners while making more queries
answerable for data buyers. As the market maker achieves
PWP on the timeline by achieving PDP at every time-point,
the task of budget allocation raises. As shown in Theorem
3.2, to satisfy Φ-personalized W-event privacy, for each data
owner ui, the total privacy losses

∑t
j=t−wi+1 ε

j
i in the sliding

window of every wi successive time-points should be no more
than her privacy loss bound ε̂i. Thus, at every time-point τ ,
the market maker should carefully allocate privacy budgets
[ε̂τ1 , ..., ε̂

τ
n] online such that for any ui:

τ−1∑
j=τ−wi+1

εji + ε̂τi ≤ ε̂i (1)

We can leverage those budget allocation techniques which
support streaming data, e.g., Budget Distribution and Budget
Absorption proposed in [11], as instances of BudgetAlloc.

BudgetAdjusting: BudgetAdjusting is a bond between Per-
turbMech and BudgetAlloc, designed for the purpose of deriv-
ing an arbitrage-free pricing function. In particular, it takes
over the role of (1) making privacy budgets in ρ-pattern
and then (2) guaranteeing the first and second properties in
Theorem 3.1. Therefore, for every time-point τ , it always
adjusts the privacy budgets [ε̂τi , ..., ε̂

τ
i] and computes adjusted

privacy budgets [ε̄τi , ..., ε̄
τ
i] in a fixed ρ-pattern which results in

a utility function satisfying the first two properties. That means
the pattern ρ largely determines whether the pricing function is
arbitrage-free or not. Intuitively, if the price decreases rapidly
as the variance increases, it is more worthwhile to buy a query
answer with high variance. Thus, to avoid arbitrage behaviors,
an instance of BudgetAdjusting should find a pattern ρ such
that εmax always decreases smoothly to some extent as v
increases and π = ΠM(v) decreases slow enough, as implied
mathematically by the first two properties.

IV. ARBITRAGE-FREE TRADING PROTOCOLS

In this section, we propose two arbitrage-free trading proto-
cols by instantiating three key modules in Alg. 1: BudgetAlloc,
BudgetAdjusting, and PerturbMech.

A. Baseline: UniformTrading

We propose the UniformTrading protocol as our baseline,
which is a combination of Minimum Laplace Mechanism
(as an instance of PerturbMech), Uniform (as an instance of
BudgetAdjusting), and an arbitrary instance of BudgetAlloc.

PerturbMech: Laplace Mechanism is a very basic and
common mechanism for implementing differential privacy and
its variations. In previous work [6], the market maker trades
query answers perturbed by Laplace Mechanism, which results
in unbounded uniform privacy losses for data owners. In this
paper, though the upper bound of individual privacy loss is
controlled by each data owner, which causes personalized up-
per bounds, we can still deploy Minimum Laplace Mechanism
(a variation of Laplace Mechanism) to perturb queries.

BudgetAdjusting: However, according to Theorem 4.1, be-
cause Minimum Laplace Mechanism always controls the pri-
vacy protection level by the minimum of [ε̄τ1 , ..., ε̄

τ
n], it is waste

to allocate adjusted privacy budgets ε̄τj > mini ε̄
τ
i . Thus, we

use Uniform to allocate uniform adjusted privacy budgets for
Minimum Laplace Mechanism.

Theorem 4.1 (Minimum Laplace Mechanism [10]): Given
a histogram query f : D → N d, a trajectory database D,
and adjusted privacy budgets [ε̄τ1 , ..., ε̄

τ
n], Minimum Laplace

Mechanism which returns f(D) +Zd satisfies Φ-PDP, where
Zd are random variables drawn from the Laplace distribution
Lap(

∆f

mini ε̄τi
) (∆f = max

D∼D′
‖f(D)− f (D′)‖1), and Φ =

[mini ε̄
τ
i , ...,mini ε̄

τ
i].

Definition 4.1 (Uniform): Given privacy budgets [ε̂τ1 , ..., ε̂
τ
n],

Uniform allocates [ε̄τ1 , ..., ε̄
τ
n] = [mini ε̂

τ
1 , ...,mini ε̂

τ
i].

We can easily observe that [ε̄τ1 , ..., ε̄
τ
n] allocated by Uniform

is in ρuni-pattern where ρuni = [1, ..., 1], and the utility
function ULap(ρ

uni · εmax) = 2 · (∆f
εmax

)2 satisfies the three
properties in Theorem 3.1. Thus, π = ΠLap(v) is arbitrage-
free. However, UniformTrading is not ideal for data owners
because it cannot make full use of privacy loss bounds.

B. Advanced: PersonalizedTrading

In order to make full use of privacy loss bounds and
personalize privacy loss for each data owner, we propose
the PersonalizedTrading protocol which is the combination
of Sample Mechanism as an instance of PerturbMech, and
Patterning (with a pre-processing algorithm PatternSearch) as
an instance of BudgetAdjusting, and an arbitrary instance of
BudgetAlloc.

PerturbMech: We leverage Sample Mechanism, one of PDP
techniques, for module PerturbMech. According to Theorem
4.2, under Sample Mechanism, each ui’s privacy loss ετi can
be personalized.

Theorem 4.2 (Sample Mechanism [10]): Given a histogram
query f : D → N d, a trajectory database D, and adjusted
privacy budgets [ε̄τ1 , ..., ε̄

τ
n], Sample mechanism computes D̃

by sampling each row D[i] with probability Pri = (eε̄
τ
i −

1)/(emaxj ε̄
τ
j − 1), and then returns f(D̃) + Zd, where Zd

are random variables drawn from the Laplace distribution
Lap(

∆f

maxj ε̄τj
), where ∆f = maxD̃∼D̃′

∥∥∥f(D̃)− f
(
D̃′
)∥∥∥

1
.

Sample mechanism satisfies Φ-PDP privacy, where Φ =
[ε̄τ1 , ..., ε̄

τ
n].

BudgetAdjusting: As for the choice of BudgetAdjusting,
we propose a algorithm named Patterning (Alg. 2) to adjust
privacy budgets so that the adjusted privacy budgets are in a
ρ-pattern, depicted as follows.

Then, the question remains which ρ to adjust the raw privacy
budgets. An ideal solution is to make the pattern ρ of adjusted
privacy budgets [ε̄τ1 , ..., ε̄

τ
n] the same as the pattern ρinit of

[ε̂1w1
, ..., ε̂nwn], i.e., ρinit = [ε̂1w1

, ..., ε̂nwn]/maxi
ε̂i
wi

, by which the
market maker can make full use of all the data owners’ privacy
loss bounds ε̂i. Unfortunately, for some ρ, the utility functions
v = USam(ρ · εmax) might violate the first two properties in
Theorem 3.1, and result in not arbitrage-free pricing functions.

Algorithm 2 Patterning
Input: [ε̂τ1 , ..., ε̂

τ
n], ρ (pre-computed by Alg. 3)

Output: [ε̄τ1 , ..., ε̄
τ
n]

1: εmax ← maxi ε̂
τ
i ;

2: for i = 1 to n do
3: if ε̂τi < εmax ∗ ρi then
4: εmax ← ε̂τi /ρi;
5: end if
6: end for
7: return [ε̄τ1 , ..., ε̄

τ
n]← εmax ∗ ρ;

For example, in some ρ-patterns, v = USam(ρ · εmax) might
decrease too slow as εmax increases; in other words, εmax
and also the price π = ΠSam(v) might decrease too quick
as v increases, which allows arbitrage behaviors. Worse yet,
because the utility function of Sample Mechanism is sophisti-
cated, i.e., USam(ρ·εmax) =

∑
i Pri ·(1−Pri)+2·(∆f

maxj εj
)2

where Pri = eρi·εmax−1
eεmax−1 , it is also extremely difficult to find

a pattern ρ resulting in an arbitrage-free pricing function. In
fact, we even cannot express the inverse function USam−1 in
analytic form.

Fortunately, given Theorem 3.1, we can transform the
problem of finding a ρ resulting in an arbitrage-free pricing
function under Sample Mechanism, into the following opti-
mization problem:

min
ρ

∑
i

(ρi − ρiniti)2,

s.t. ∀εmax > 0, USam
′(ρ · εmax) + β ≤ 0, and

USam(ρ · εmax) · USam′′(ρ · εmax)− 2[USam
′(εmax)]2 ≤ 0

The constraints are based on the first and second properties
in Theorem 3.1, where β > 0 is an extremely small positive
constant, and we drop the third property because it is always
satisfied under Sample Mechanism. We also propose a algo-
rithm named PatternSearch (Alg. 3) to solve this problem by
binary search, based on the observation that for each element
ρi 6= 1, the smaller the ρi is, the closer the utility function v =
USam(ρ · εmax) is to satisfying the optimization constraints.
We note that there must be such a ρ found by PatternSearch
satisfying those constraints, because in the worst case where
ρi 6= 1 is equal to 0, v = USam(ρ · εmax) = 2 · (∆f

maxj εj
)2,

which satisfies the three properties in Theorem 3.1.

C. Budget Allocation

We propose a budget allocation algorithm named Seize-the-
moment as an instance of module BudgetAlloc. Besides, the
well-known budget allocation algorithm Budget Absorption
(BA) is also leveraged but tailored to fit our settings.

Seize-the-moment (Alg. 4): Seize-the-moment means it al-
ways allocates each data owner’s privacy loss as much as
possible at the moment. At time-point 1, it allocates privacy
budgets with the proportion proS = 1. At the time point τ ,
for the owner ui, once the buyer exhausts her privacy budget
ε̂τi , Seize-the-moment decreases the proportion proS for her.
If buyers use up ui’s privacy budgets all the time, the proS
for ui will be 0.5.

Algorithm 3 PatternSearch
Input: ρinit;
Output: ρ;
1: ρ, ρstart, ρend ← ρinit;
2: ρend ← for each ρendi 6= 1, let ρendi = 0;
3: while True do
4: ρpre ← ρ;
5: if optimization constraints satisfied then
6: ρend ← ρ;
7: ρ← for each ρi 6= 1, let ρi = (ρi + ρstarti)/2;
8: else
9: ρstart ← ρ;

10: ρ← for each ρi 6= 1, let ρi = (ρi + ρendi)/2;
11: end if
12: if

∑
i(ρi−ρ

pre
i)2 < a extremely small positive constant then

13: return ρend

14: end if
15: end while

Algorithm 4 Seize-the-moment

Input: ε̂i, [ε̂1i , ..., ε̂
τ−1
i], [ε1i , ..., ε

τ−1
i]

Output: ε̂τi
1: losses←

∑τ−1
t=τ−wi+1 ε

t
i; //wi is a global constant.

2: count←Calculate the times ε̂ti = εti for t = 1 to τ − 1
3: proS ← 1.0− 0.5 ∗ (count

τ−1
);

4: return (ε̂i − losses) ∗ proS ;

Budget Absorption: Budget Absorption uniformly allocates
privacy budgets initially and remained privacy budgets can
be absorbed by privacy budgets at the subsequent time-point.
Given a database Dτ , to each row Dτ [i], at first it allocates
ε̂i/wi, and then additionally allocates the previous remained
budget ε̂τ−1

i − ετ−1
i . Thus, the privacy budget for Dτ [i] might

be equal to ε̂i/wi+ε̂τ−1
i −ετ−1

i . However, if the total remained
budget ε̂i −

∑τ−1
t=τ−wi+1 ε

t
i is less than ε̂i/wi + ε̂τ−1

i − ετ−1
i ,

it just allocates ε̂i −
∑τ−1
t=τ−wi+1 ε

t
i to Dτ [i].

Algorithm 5 Budget Absorption
Input: ε̂i, [ε̂1i , ..., ε̂

τ−1
i], [ε1i , ..., ε

τ−1
i]

Output: ε̂τi
1: ε̂τi ← ε̂i/wi; //wi is a global constant
2: if τ > 1 then
3: absorption← ε̂τi + ε̂τ−1

i − ετ−1
i

4: losses←
∑τ−1
t=τ−wi+1 ε

t
i;

5: remaining ← ε̂i − losses; //remaining privacy loss bound;
6: ε̂τi ← min(absorption, remaning);
7: end if
8: return ε̂τi ;

The original version of BA has a dissimilarity calculation
sub-mechanism to compute the distance dis1 between the
raw query answer at time-point τ and a perturbed query
answer published before τ , i.e., qτ and q̃pre. If dis1 is lower
than the expected distance dis2 between a perturbed query
answer and the raw query answer at time-point τ , i.e., q̃τ

and qτ , then it will publish q̃pre instead of q̃τ . One limitation
of original BA is that it requires Laplace Mechanism as
perturbation mechanism. Besides, the dissimilarity calculation
sub-mechanism provides better utility over the whole timeline,

but the utility might be worse for a single time-point because it
also perturbs the former distance dis1. To provide a worst-case
utility guarantee for data buyers, we drop this sub-mechanism.

V. EXPERIMENTS

In this section, we simulate transactions in our data market-
place on synthetic data. We conduct two parts of experiments
as follows: from data owner’ point of view, to verify the ef-
fectiveness of budget allocation algorithms in terms of making
full use of data owners’ privacy loss bounds; from data buyers’
point of view, to verify the effectiveness of two arbitrage-free
trading protocols in terms of making more queries answerable
and cost-performance.

Experiment setup: We generate n (the default value is 200)
data owners’ locations for 100 time-points. In this paper,
because we do not consider any data correlation (which will be
considered in our future work), those locations are randomly
picked and represented by d = 20 regions for simplicity. Then,
according to our previous user survey on privacy preference
[9], we randomly divided those data owners into four groups:
conservative, consisting of 16 percent of data owners with
average privacy loss bounds ε̂i/wi ∈ [0.01, 0.2]; hesitant,
consisting of 16 percent with ε̂i/wi ∈ [0.2, 0.5]; ordinary,
consisting of 33 percent with ε̂i/wi ∈ [0.5, 0.9]; liberal,
consisting of 34 percent with ε̂i/wi = 1.0. Besides, each data
owner’s preference on the sliding-window size wi is uniformly
at random picked from [W−1,W−1] where the default value
of W is 6.

A. Experiments for Data Owners

Now we start to verify the effectiveness of different budget
allocation algorithms as instances of module BudgetAlloc in
terms of making full use of data owners’ privacy loss bounds.
We use two budget allocation algorithms as benchmarks: Time-
line Uniform [11] which uniformly allocates privacy budgets
ε̂τi = ε̂i/wi for each time-point τ , and Half, which allocates
ε̂τi = (ε̂i −

∑τ−1
j=τ−wi+1 ε

j
i)/2 (i.e., half of the remaining

privacy loss bounds).
Request the same histogram variance v. First, we simulate

the cases where the buyer requests the same histogram vari-
ance for all time-points, because query answers from different
time-points but with the same utility can be easily used to
observe the changes of the number of data owners in different
regions. Figure 4 shows the average privacy loss consumed
per time-point and data owner. For both the UniformTrading
and PersonalizedTrading protocols, if the buyer requests a low
histogram variance which corresponds to a high utility, the
Seize-the-moment algorithm always outperforms the others
because it can help sell more privacy losses for data owners
on average. However, with the histogram variance increasing,
the gap of performance between those algorithms narrows
and disappears finally. Hence, if buyers always want accurate
queries, the superiority of Seize-the-moment will be high-
lighted. Unsurprisingly, Timeline Uniform performs the worst
where even no privacy loss is sold when the histogram variance
is extremely low, because such queries are not answerable.

Fig. 4. Request the same histogram variance over the timeline Fig. 5. Impact of sliding-window size on average privacy loss

Fig. 6. Impact of the number of users Fig. 7. Actual Utility

Varying the standard sliding-window size W . Then we
want to know the impact of the W which controls the range
of each data owner’s preferred sliding-window size wi. This
time for each query the buyer randomly choose a histogram
variance v more than the lower bound v̌, which means each
query is answerable. As shown in Figure 5, it seems that the
sliding-window size has slight impact on the average privacy
loss consumed. However, Seize-the-moment still performs
the best for all the standard sliding-window sizes for both
UniformTrading and PersonalizedTrading.

B. Experiments for Data Buyers

Next, we evaluate PersonalizeTrading and UniformTrading,
both with Seize-the-moment for BudgetAlloc due to its great
performance, for our design goals of raising cost-performance
and making more queries answerable for data buyers.

Impact of the number of data owners n.: As depicted in
Figure 6, as the n increases, PersonalizedTrading can always
make more queries answerable because its lower bound of
histogram variance is much lower than UniformTrading; its
cost-performance is also better because for the same histogram
variance, the price is lower. Remind that Laplace Mechanism,
the perturbation mechanism for UniformTrading, always use
the minimum privacy loss to perturb a query answer, resulting
in UniformTrading more sensitive to an extremely conservative
data owner. Thus, when n increases, there will be more
extremely conservative data owners involved in data trading,
which causes the bad performance of UniformTrading in terms
of making more queries answerable.

Actual utility. Since the histogram variance v is a worst-
case guarantee which satisfies v ≥ maxl V ar[q̃

τ
l], we measure

the actual utility of a query answer by the maximum variance
among all its elements, i.e., vmax = maxl V ar[q̃

τ
l]. As shown

in Figure 7, as for UniformTrading, there is no difference

between the histogram variance and the maximum variance
for the same query answer; but as for PersonalizedTrading, the
maximum variance is obviously lower, which means that the
accuracy of query answers we trade is actually higher than we
guarantee. Thus, the cost-performance of PersonalizedTrading
actually is even better than we observed in Figure 6.

VI. RELATED WORK

Personal Data Trading: Balazinska et al. [14] guides the
tendency of research on Data Market for the database research
community. In recent years, personal data or individual privacy
loss has been perceived as a commodity. Ghosh et al. [3]
designed markets for trading statistics over private data and
the privacy loss at auctions. Then, Riederer et al. [15] focused
on allowing users to decide which part of their personally
identifiable information for sale in the auction. Koutris et al.
[5] proposed the original model of query-based pricing where
no negotiation is allowed in terms of pricing. Li et al. [6]
also adapted the query-based model with the constraint of
arbitrage-free and privacy preservation by differential privacy,
but individual privacy loss can be infinite. Nget et al. [9]
analyzed people’s privacy attitude and found that some people
put privacy in a more important place than money. Hence in
this paper, to bound individual privacy loss, we let each data
owner set the upper bound of her own privacy loss. Niu et al.
[7] proposed a pricing framework trading common aggregate
statistics over correlated data. As for mobile data, a data-
sharing mechanism and decision framework was proposed by
Aly et al. to estimate the expected value of a single data point
and make purchasing decisions [16]; Kanza et al. [17] also pre-
sented a geosocial marketplace taking privacy protection into
account but without consideration of arbitrage-free pricing. We
consider trading statistical queries over infinite trajectory data

streams rather than trading a raw trajectory data point, with
the constraint of arbitrage-free pricing.

Differentially Private Streaming Data Release: The re-
search on differentially private streaming data was initiated by
the work of Dwork et al. [18]: event-level DP which protects
at most one single event, and user-level DP which hides all
the events of each user. Their another work [19] focused on
finite data streams and a binary tree is constructed to inject
an appropriate noise. Then, Chan et al. [20] adapted such
technique for infinite streams. Bolot et al. [21] proposed the
notion of decayed privacy to reduce the privacy protection
level of previous data. Recently, Kellaris et al. [11] tackled
the limitations of event-level DP and user-level DP, and
introduced the notion of w-event privacy where a sliding
window methodology is applied. They also proposed budget
allocation algorithms budget distribution (BD) and budget
absorption (BA) which allocate portion of the entire privacy
budget for approximation of data publishing and portion for
data perturbation. Wang et al. [22] [23] further proposed
an adaptive budget allocation algorithm which dynamically
computes the portion to increase the utility of the released data.
Then, in order to personalize the fixed parameter w of window
size, and the rate of data points being generated, Cao et al. [24]
extended w-event privacy to l-trajectory privacy. Also, they
investigated data correlations in streaming data which causes
temporal privacy loss, and proposed mechanisms to bound
such privacy loss [25] [26]. We combine w-event privacy and
personalized differential privacy together to publish streaming
data to make the level of privacy protection personalized [21]
for each data owner.

VII. CONCLUSION

We proposed a trading framework for infinite streaming
mobile data where each data owner’s privacy loss under per-
sonalizedW-event privacy is bounded. We proposed Theorem
3.1 to guide the design of framework to guarantee arbitrage-
free pricing for the market maker. Then, also based on this
theorem, we designed the PersonalizedTrading protocol to
make more queries answerable and raise the cost-performance
for data buyers, and our experiments verified its outperforming
effectiveness compared to the baseline UniformTrading pro-
tocol. The experimental results also show the importance of
trading personal data with personalized privacy losses, since
uniform privacy losses extremely constrain the utility of query
answers so that a huge number of queries cannot be answered.

REFERENCES

[1] J. Brustein, “Start-ups aim to help users put a price on their personal
data,” The New York Times, Feb 2012.

[2] J. A. Gabisch and G. R. Milne, “The impact of compensation on infor-
mation ownership and privacy control,” Journal of Consumer Marketing,
vol. 31, no. 1, pp. 13–26, 2014.

[3] A. Ghosh and A. Roth, “Selling privacy at auction,” Games and
Economic Behavior, vol. 91, pp. 334–346, 2015.

[4] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu,
“Toward practical query pricing with querymarket,” in proceedings of
the 2013 ACM SIGMOD international conference on management of
data. ACM, 2013, pp. 613–624.

[5] ——, “Query-based data pricing,” Journal of the ACM (JACM), vol. 62,
no. 5, p. 43, 2015.

[6] C. Li, D. Y. Li, G. Miklau, and D. Suciu, “A theory of pricing private
data,” ACM Transactions on Database Systems (TODS), vol. 39, no. 4,
p. 34, 2014.

[7] C. Niu, Z. Zheng, F. Wu, S. Tang, X. Gao, and G. Chen, “Unlocking
the value of privacy: Trading aggregate statistics over private correlated
data,” in Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining. ACM, 2018, pp.
2031–2040.

[8] L. Chen, P. Koutris, and A. Kumar, “Towards model-based pricing for
machine learning in a data marketplace,” in Proceedings of the 2019
International Conference on Management of Data, 2019, pp. 1535–1552.

[9] R. Nget, Y. Cao, and M. Yoshikawa, “How to balance privacy and money
through pricing mechanism in personal data market,” arXiv preprint
arXiv:1705.02982, 2017.

[10] Z. Jorgensen, T. Yu, and G. Cormode, “Conservative or liberal? person-
alized differential privacy,” in 2015 IEEE 31St international conference
on data engineering. IEEE, 2015, pp. 1023–1034.

[11] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias, “Differentially
private event sequences over infinite streams,” Proceedings of the VLDB
Endowment, vol. 7, no. 12, pp. 1155–1166, 2014.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Theory of cryptography
conference. Springer, 2006, pp. 265–284.

[13] S. Zheng, Y. Cao, and M. Yoshikawa, “Money cannot buy everything:
Trading mobile data with controllable privacy loss (full version),” https:
//www.db.soc.i.kyoto-u.ac.jp/mdm20.pdf.

[14] M. Balazinska, B. Howe, and D. Suciu, “Data markets in the cloud:
An opportunity for the database community,” Proc. of the VLDB
Endowment, vol. 4, no. 12, pp. 1482–1485, 2011.

[15] C. Riederer, V. Erramilli, A. Chaintreau, B. Krishnamurthy, and P. Ro-
driguez, “For sale : your data: by : you,” in Acm Workshop on Hot
Topics in Networks, 2011.

[16] H. Aly, J. Krumm, G. Ranade, and E. Horvitz, “On the value of
spatiotemporal information: Principles and scenarios,” in Proceedings
of the 26th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, ser. SIGSPATIAL ’18. New
York, NY, USA: ACM, 2018, pp. 179–188. [Online]. Available:
http://doi.acm.org/10.1145/3274895.3274905

[17] Y. Kanza and H. Samet, “An online marketplace for geosocial data,”
in Proceedings of the 23rd SIGSPATIAL International Conference on
Advances in Geographic Information Systems. ACM, 2015, p. 10.

[18] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential privacy
under continual observation,” in Proceedings of the forty-second ACM
symposium on Theory of computing. ACM, 2010, pp. 715–724.

[19] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[20] T.-H. H. Chan, E. Shi, and D. Song, “Private and continual release
of statistics,” ACM Transactions on Information and System Security
(TISSEC), vol. 14, no. 3, p. 26, 2011.

[21] J. Bolot, N. Fawaz, S. Muthukrishnan, A. Nikolov, and N. Taft, “Private
decayed predicate sums on streams,” in Proceedings of the 16th Inter-
national Conference on Database Theory, ser. ICDT ’13. New York,
NY, USA: ACM, 2013, pp. 284–295.

[22] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren, “Real-
time and spatio-temporal crowd-sourced social network data publishing
with differential privacy,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 4, pp. 591–606, 2016.

[23] ——, “Rescuedp: Real-time spatio-temporal crowd-sourced data pub-
lishing with differential privacy,” in IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications.
IEEE, 2016, pp. 1–9.

[24] Y. Cao and M. Yoshikawa, “Differentially private real-time data release
over infinite trajectory streams,” in 2015 16th IEEE International
Conference on Mobile Data Management, vol. 2. IEEE, 2015, pp.
68–73.

[25] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong, “Quantifying differential
privacy under temporal correlations,” in Data Engineering (ICDE), 2017
IEEE 33rd International Conference on. IEEE, 2017, pp. 821–832.

[26] ——, “Quantifying differential privacy in continuous data release under
temporal correlations,” IEEE Transactions on Knowledge and Data
Engineering, 2018.

APPENDIX

Proof A.1 (of Theorem 3.1): First, we construct a function
v = UM,ρ(εmax) such that UM,ρ(εmax) = UM(ρ · εmax). We
drop the subscripts M and max from UM, UM,ρ, ΠM and
εmax to simplify notation. Then, we are going to construct a
function h(x) (x ≥ 0) which we will prove sub-additive later,
i.e., ∀x1, x2 ≥ 0, h(x1) + h(x2) ≥ h(x1 + x2).

Let h(x) =

{
U−1
ρ (1

x), x > 0

0, x = 0
.

Because of the first property in the theorem, we can derive
that ∀v > 0, U−1

ρ
′
(v) < 0. Then, because of the second

property in the theorem, we have h′′(x) ≤ 0 for x > 0:

∀ε > 0, U(ρ · ε) · U ′′(ρ · ε)− 2 · [U ′(ρ · ε)]2 ≤ 0

⇒∀ε > 0, Uρ(ε) · U ′′ρ (ε)− 2 · [U ′ρ(ε)]2 ≤ 0

⇒∀v > 0, v · [−
U−1
ρ
′′
(v)

(U−1
ρ
′
(v))3

]− 2 · (1

U−1
ρ
′
(v)

)2 ≤ 0

⇒∀v > 0, v · U−1
ρ
′′
(v) + 2 · U−1

ρ
′
(v) ≤ 0

⇒∀x > 0,
1

x
· U−1

ρ
′′
(
1

x
) + 2 · U−1

ρ
′
(
1

x
) ≤ 0

⇒∀x > 0,
1

x4
· U−1

ρ
′′
(
1

x
) +

2

x3
· U−1

ρ
′
(
1

x
) ≤ 0

⇒∀x > 0, h′′(x) = U−1
ρ
′′
(
1

x
) · [(1

x
)′]2 + U−1

ρ
′
(
1

x
) · (1

x
)′′ ≤ 0

Then, because of the third property in the theorem, h(x) is
right-continuous for x = 0:

lim
ε−>0+

U(ρ · ε) = +∞

⇒ lim
x−>0+

h(x) = lim
x−>0+

U−1
ρ (

1

x
) = lim

v−>+∞
U−1
ρ (v) = 0

⇒ lim
x−>0+

h(x) = h(0)

Then, according to Lagrange Mean Value Theorem, it can
be implied that h(x) is a sub-additive function:

∀x1, x2 ∈ [0,+∞), x1 ≤ x2,

h(x1) + h(x2)− h(x1 + x2)

=[h(x1)− h(0)]− [h(x1 + x2)− h(x2)]

=x1 · h′(ξ1)− x1 · h′(ξ2)

=x1 · (ξ1 − ξ2) · h′′(ξ3) ≥ 0

where ξ1 ∈ (0, x1), ξ2 ∈ (x2, x1 + x2), and ξ3 ∈ (ξ1, ξ2).
Then, for any multiset v1, ..., vm and any a1, ..., am such

that
∑m
j=1 aj = 1 and

∑m
j=1 a

2
jvj ≤ v, we have U−1

ρ (v) ≤∑m
j=1 U

−1
ρ (vj):

U−1
ρ (v) ≤ U−1

ρ (

m∑
j=1

a2
jvj) = U−1

ρ (

∑m
j=1 a

2
jvj

(
∑m
j=1 aj)

2
)

≤ U−1
ρ (

∑m
j=1 a

2
jvj

(
∑m
j=1 a

2
jvj) · (

∑m
j=1

1
vj

)
)

= U−1
ρ (

1∑m
j=1

1
vj

) = h(

m∑
j=1

1

vj
) ≤

m∑
j=1

h(
1

vj
) =

m∑
j=1

U−1
ρ (vj)

Finally, we prove that π = Π(v) is arbitrage-free:

Π(v) = [c1, ..., cn] · U−1(v)

= [c1, ..., cn] · ρ · U−1
ρ (v)

≤ [c1, ..., cn] · ρ ·
m∑
j=1

U−1
ρ (vj)

=

m∑
j=1

[c1, ..., cn] · U−1(vj) =

m∑
j=1

Π(vj)

Proof A.2 (of Theorem 3.2): For any pair of wi-neighboring
stream prefixes Sτ , Sτ ′ with pairs of neighboring databases
Dt ui∼ Dt′, any τ and any possible output o = (o1, ..., oτ),
Due to Definition 2.1, we have:

∀t ∈ [τ], P r[Mt(D
t) = ot] ≤ eε

t
iPr[Mt(D

t′) = ot]

Because each Mt computes ot independently, we have:

Pr[M(Sτ) = o] =

τ∏
t=1

Pr[Mt(D
t) = ot]

Because Sτ , Sτ ′ are wi-neighboring, there is t ∈ [τ] such that
Dk = Dk′ for k ∈ [1, t− wi] ∪ [t+ 1, τ]. Then, we have:

Pr[M(Sτ) = o]

Pr[M(Sτ ′) = o]
=

∏t
k=t−wi+1 Pr[Mk(Dk) = ok]∏t
k=t−wi+1 Pr[Mk(Dk′) = ok]

≤
t∏

k=t−wi+1

eε
k
i = e

∑t
k=t−wi+1 ε

k
i ≤ eεi

Thus, M satisfies Φ-personalized W-event privacy.

