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ABSTRACT
Benchmarking is crucial for evaluating a DBMS, yet existing bench-

marks often fail to reflect the varied nature of user workloads. As

a result, there is increasing momentum toward creating databases

that incorporate real-world user data to more accurately mirror

business environments. However, privacy concerns deter users from

directly sharing their data, underscoring the importance of creat-

ing synthesized databases for benchmarking that also prioritize

privacy protection. Differential privacy (DP)-based data synthesis

has become a key method for safeguarding privacy when sharing

data, but the focus has largely been on minimizing errors in aggre-

gate queries or downstream ML tasks, with less attention given to

benchmarking factors like query runtime performance. This paper

delves into differentially private database synthesis specifically for

benchmark publishing scenarios, aiming to produce a synthetic

database whose benchmarking factors closely resemble those of

the original data. Introducing PrivBench, an innovative synthesis

framework based on sum-product networks (SPNs), we support

the synthesis of high-quality benchmark databases that maintain

fidelity in both data distribution and query runtime performance

while preserving privacy. We validate that PrivBench can ensure

database-level DP even when generating multi-relation databases

with complex reference relationships. Our extensive experiments

show that PrivBench efficiently synthesizes data that maintains

privacy and excels in both data distribution similarity and query

runtime similarity.
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1 INTRODUCTION
Benchmarking, a crucial component for evaluating the performance

of DBMSs, has historically leveraged established benchmarks such

as the TPC series [2]. These conventional benchmarks use fixed

schemas and queries to compare the performance of different data-

base systems standardizedly. However, they may fall short in rep-

resenting the varied, specific workloads and data characteristics

unique to every user. Moreover, the nuances of real-world applica-

tions, intrinsic data characteristics, and user-specific performance

expectations might not be fully captured by these fixed benchmarks,

showing a need for benchmarks more tailored to individual users.

For benchmark publishing, synthesizing a database is a highly

challenging endeavor because it requires attention to four concerns:

(1) fidelity of data distribution, (2) fidelity of query runtime per-

formance, (3) privacy protection, and (4) synthesis efficiency. The

first two concerns ensure accurate benchmarking, privacy protec-

tion accommodates compliance with data protection regulations,

and synthesis efficiency facilitates rapid updates of enterprise-level

benchmarks. Some database synthesis efforts, such as SAM [44],

can produce high-fidelity benchmarks but overlook privacy protec-

tion. Such oversight can lead to inapplicability in contexts where

data privacy is paramount, e.g., those involving user data. On the

other hand, existing privacy-preserving data synthesis methods

(e.g., [3, 4, 26, 28, 29, 32, 34, 46, 47]) only focus on enhancing the

fidelity in data distribution while overlooking the fidelity in query

runtime performance, thereby far from meeting the practical de-

mands of benchmarking scenarios.
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Figure 1: Learning a single-relation SPN and generating data based on the SPN.

In this paper, we propose PrivBench, a database synthesis frame-

work for benchmark publishing that addresses all four of the afore-

mentioned concerns. The design of PrivBench is based on our novel

observation: sum-product networks [33], when used as data syn-

thesis models, can simultaneously ensure the fidelity of data dis-

tribution and query runtime while offering linear-time efficiency

for data sampling. However, SPNs do not provide privacy protec-

tion. Therefore, PrivBench combines SPNs with differential pri-

vacy (DP) [8], a widely-adopted privacy technique, to construct

privacy-preserving SPNs. Using DP-based SPNs, PrivBench effi-

ciently synthesizes high-fidelity databases, protecting user privacy

and reducing the compromise on quality in benchmarking scenar-

ios. In particular, PrivBench constructs SPNs on the input database

instance, which is equivalent to partitioning the records of each

relational table into disjoint blocks and building histograms within

each block. Additionally, we connect the per-table SPNs based on

reference relationships to form a multi-SPN model. We inject noise

into all partitioning operations, histograms, and SPN connections

to guarantee DP for data synthesis through the multi-SPN.

Example 1. Figure 1 illustrates the process of constructing an

SPN for a single table and synthesizing data from it. Initially, the

original table comprises two attributes and 500 rows. The data

is partitioned into two groups of rows through clustering, which

introduces a sum node. Subsequently, the columns within each

group are separated by a product node, with each column forming

a leaf node. Each leaf node stores a histogram representing its

corresponding single-column subtable. To ensure DP, the table

partition decision (S𝐿,S𝑅) for the sum node, which consists of two

sets of row indices or IDs, and the histogram 𝐻 for each leaf node

are perturbed. During the database synthesis phase, synthetic data

are sampled from these perturbed histograms and progressively

merged up the hierarchy. A product node performs a horizontal

concatenation of columns, while a sum node executes a vertical

concatenation of rows. This recursive procedure is repeated until

it reaches the root node, resulting in the generation of a complete

synthetic database.

Table 1: Comparison with existing differentially private data
synthesis methods.

Method Multi-
relation

Similarity EfficiencyData distr. Query runtime
AIM [29] low low low

PrivSyn [47] low med. med.

DataSynthesizer [32] low med. high

PrivBayes [46] low med. high

Exponential-PreFair [34] med. low low

MST [28] med. low med.

DPGAN [26] med. med. low

PrivMRF [3] med. high low

Greedy-PreFair [34] med. high med.

PrivLava [4] ✓ high med. low

PrivBench ✓ high high high

In essence, our contribution is a novel exploration into the bal-

ance between synthesizing enterprise-level databases that maintain

a high fidelity to original user data for DBMS benchmarking, while

preserving user privacy. Through the strategic incorporation of

SPNs and DP, PrivBench aligns closely with benchmarking scenar-

ios, protecting user privacy and reducing the compromise on the

quality or authenticity of the synthesized database. Table 1 provides

a summary of comparisons with alternative methods.

Our experimental results on several publicly accessible datasets

demonstrate that, compared to PrivLava [4], the current state-of-

the-art (SOTA) in privacy-preserving data synthesis, PrivBench

consistently achieves superior performance in both data distribu-

tion similarity and query runtime similarity, while significantly

enhancing synthesis efficiency. Notably, PrivBench reduces KL di-

vergence (KLD) by up to 62.4% and Q-error by up to 97.8% relative

to PrivLava, which respectively measure the differences in data

distribution and query runtime performance between the original

and synthetic data. Our contributions are summarized as follows.

• We study the problem of privacy-preserving database synthesis,

which transforms a database in a differentially private manner

while aligning the performance of query workloads on the syn-

thetic database with the original one.
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(a) Primary private table.

ID Sex Age . . . H-ID

1 1 27 . . . 1

2 0 25 . . . 1

3 0 30 . . . 2

4 1 32 . . . 2

5 0 5 . . . 2

6 1 46 . . . 3

. . . . . . . . . . . . . . .

Range [0, 1] [1, 100] . . .

(b) Secondary private table.

Figure 2: A database consisting of two private tables.

• To solve the problem, we propose PrivBench, which synthesizes

databases by leveraging differentially private SPNs. These SPNs

not only address the four key concerns in benchmark publish-

ing scenarios but also support multi-relation database synthesis

by constructing differentially private fanout tables for primary-

foreign key references, adeptly managing complex dependencies

among the relations. To the best of our knowledge, our work is

the first to facilitate differentially private SPNs and the first to

apply them to database synthesis.

• We conduct a rigorous analysis of privacy and time complexity

for PrivBench. Our analysis shows how PrivBench ensures that

its data synthesis, through the complex multi-SPN construction

process, achieves database-level DP [4], and that the synthesis

time is polynomial in the number of records and the number of

attributes in each table.

• Our extensive experimental results illustrate that PrivBench con-

sistently achieves better fidelity in both data distribution and

query runtime performance while being significantly more effi-

cient than alternative methods.

2 PROBLEM DEFINITION
We consider a scenario where a benchmark publisher, such as an

enterprise or organization, synthesizes a database benchmark using

private data (e.g., user data) and releases it to other parties, referred

to as benchmark consumers, for testing purposes. The benchmark

publisher is a trusted party who is granted access to the original

database by the data entities (e.g., users). In contrast, the benchmark

consumers may be malicious and may try to infer private informa-

tion from the released benchmark. Therefore, data anonymization

techniques, such as differential privacy [9], are required to safe-

guard data privacy and ensure compliance with data protection

regulations like the GDPR.

Consider a benchmark that consists of a database instance 𝐷 =

{𝑇1,𝑇2, . . . ,𝑇𝑛 } with its associated schema, each 𝑇𝑖 ∈ 𝐷 being a

private relation table. For any 𝑇𝑖 ,𝑇𝑗 ∈ 𝐷 , a record 𝑟𝑖 ∈ 𝑇𝑖 refers to
a record 𝑟 𝑗 ∈ 𝑇𝑗 , denoted as 𝑟𝑖 → 𝑟 𝑗 , if the foreign key of 𝑟𝑖 refers

to the primary key of 𝑟 𝑗 and the values of the two keys match. A

record 𝑟𝑖 depends on 𝑟 𝑗 , denoted as 𝑟𝑖 ⇝ 𝑟 𝑗 , if either 𝑟𝑖 → 𝑟 𝑗 or 𝑟𝑖
refers to another record 𝑟𝑘 ∈ 𝑇𝑘 (𝑘 ≠ 𝑖, 𝑗 ) that depends on 𝑟 𝑗 . We

assume 𝑟 ⇝ 𝑟 never occurs for any record 𝑟 .

Without loss of generality, following previous work [4], we as-

sume that 𝑇1 is a primary private table (e.g., the table in Figure 2a)

that contains sensitive information, and any other table𝑇𝑖 , 𝑖 ∈ [2, 𝑛],
is a secondary private table (e.g., the table in Figure 2b) in which

the records depend on the records in 𝑇1. We study the case of syn-

thesizing a database ˆ︁𝐷 similar to 𝐷 while preserving the privacy

of all private tables. We employ DP [9], a celebrated approach for

protecting database privacy.

Definition 1 (Table-Level DP [9]). A randomized algorithm
M that takes as input a table 𝑇 satisfies table-level 𝜖-DP (𝜖 ≥ 0) if
for any possible output 𝑜 , and for any pair of neighboring tables𝑇,𝑇 ′

that differ in the value of only one record, we have

Pr[M(𝑇 ) = 𝑜] ≤ exp(𝜖) · Pr[M(𝑇 ′) = 𝑜] .
Definition 2 (Database-Level DP [4]). A randomized algo-

rithmM that takes as input a database 𝐷 satisfies database-level
𝜖-DP (𝜖 ≥ 0) if for any possible output 𝑜 and for any pair of neigh-
boring databases 𝐷,𝐷′, we have

Pr[M(𝐷) = 𝑜] ≤ exp(𝜖) · Pr[M(𝐷′) = 𝑜] .
𝐷 and 𝐷′ neighbor if for the primary table𝑇1, they differ in the value
of only one record 𝑟1 ∈ 𝑇1, and for the other tables 𝑇𝑖 , 𝑖 ∈ [2, 𝑛], they
differ in the values of all records 𝑟𝑖 ⇝ 𝑟1 that depend on 𝑟1.

Table-level DP provides a strong guarantee that the output dis-

tributions remain indistinguishable before and after any change

to a single record 𝑟 ∈ 𝑇 . This guarantee should hold even when

accounting for dependencies among records induced by foreign

keys in the relational schema. For example, in Figure 2, if we aim

to protect a household in the primary table with multiple house-

hold members in the secondary table, we need to ensure that any

holistic changes to the information of each household and its mem-

bers do not significantly affect the output. Therefore, we adopt

database-level DP [4], which further ensures that any changes in

other records resulting from modifying a record 𝑟1 ∈ 𝑇1 also have

a limited impact on the output. To ensure a bounded multiplicity

for neighboring databases, we follow prior work [4, 7, 19, 38] to

assume that each record in 𝑇1 is referred to by at most 𝜏𝑖 records

for each secondary table𝑇𝑖 . The privacy budget 𝜖 controls the level

of indistinguishability. The smaller the privacy budget, the greater

the level of privacy protection. With the definition of DP, we target

the following privacy-preserving database synthesis problem.

Problem 1 (Privacy-Preserving Database Synthesis). Given
a database 𝐷 with its schema, the task is to generate a database ˆ︁𝐷
with the same schema as 𝐷 while ensuring database-level 𝜖-DP.

Whereas many differentially private data synthesizers are avail-

able [3, 4, 26, 28, 29, 32, 34, 46, 47], their aims are mainly reducing

the errors of aggregate queries or optimizing downstreamML tasks,

rather than publishing a database for benchmarking. Considering

that the benchmark is used to test the performance of a DBMS, we

aim to synthesize a database ˆ︁𝐷 with the following concerns.

1. Data distribution similarity. ˆ︁𝐷 should be statistically similar to 𝐷 .

Given a table 𝑇 ∈ 𝐷 and its counterpart ˆ︁𝑇 ∈ ˆ︁𝐷 , we measure their

statistical similarity by the KL divergence (KLD) of 𝑇 from ˆ︁𝑇 :
KLD(𝑇 ∥ ˆ︁𝑇 ) = ∑︂

𝑥∈X(𝑇∪ˆ︁𝑇 ) Pr[𝑥 |𝑇 ] log

(︄
Pr[𝑥 |𝑇 ]
Pr[𝑥 |ˆ︁𝑇 ]

)︄
where Pr[𝑥 |𝑇 ] denotes the probability of row value 𝑥 in 𝑇 , and

X(𝑇 ) denotes the set of row values in 𝑇 . Then, the KLD of 𝐷 fromˆ︁𝐷 is defined as the average KLD over all the tables of 𝐷 .



2. Query runtime similarity. For the query workloads to be executed

on 𝐷 , we expect they report the same runtime performance on ˆ︁𝐷 .
Given a query, we can compare the execution times on 𝐷 and ˆ︁𝐷 .
Since the execution time may vary across DBMSs, we can also

compare the cardinality, i.e., the number of records in the query

result, which is often used in a query optimizer for estimating

query performance [22]. In particular, Q-error [31] is a widely used

measure for comparing cardinalities:

QE(𝑞, 𝐷, ˆ︁𝐷) = max

(︄
𝐶𝑎𝑟𝑑 (𝑞, 𝐷)
𝐶𝑎𝑟𝑑 (𝑞, ˆ︁𝐷) , 𝐶𝑎𝑟𝑑 (𝑞, ˆ︁𝐷)𝐶𝑎𝑟𝑑 (𝑞, 𝐷)

)︄
where 𝑞 denotes a query in the workload, and 𝐶𝑎𝑟𝑑 (𝑞, 𝐷) denotes
the cardinality of executing 𝑞 on 𝐷 . Then, we compute the mean

Q-error of the queries in the workload.

3. Synthesis efficiency. ˆ︁𝐷 should be synthesized efficiently. In prac-

tice, databases often contain a large number of records and at-

tributes. As these databases are frequently updated with daily activ-

ities, the synthetic benchmark also needs to be updated accordingly,

resulting in significant time costs. Therefore, we should ensure that

the synthesis algorithm completes in polynomial time w.r.t. both

the number of records and the number of attributes.

3 PRIVBENCH
In this section, we propose PrivBench, an SPN-based differentially

private database synthesis method.

3.1 Sum-Product Network
An SPN [33] is a rooted acyclic-directed graph that represents the

data distribution of a dataset. PrivBench utilizes SPNs to address

the three concerns outlined in Section 2 due to the following merits.

(1) SPNs have a strong ability to capture data distributions. Cur-

rent SOTAs [3, 4] for privacy-preserving data synthesis have

employed graphical models (GMs) other than SPNs to learn

data distributions. However, it has been proven that all tractable

GMs can be transformed into equivalent SPNs and that SPNs

are even strictly more general, implying that SPNs can learn

more accurate data distributions than other GMs [33].

(2) SPNs have demonstrated excellent performance in cardinality

estimation [12, 13]. Our insight is that, since computing the

cardinalities of queries on synthetic data can be approximately

viewed as estimating the cardinalities on the original data, we

believe that SPNs should performwell in optimizing the Q-error

metric, resulting in better query runtime similarity.

(3) Inference in SPNs finishes in time linear to the number of nodes

[33], making sampling data from SPNs notably efficient.

In a nutshell, the use of SPNs for database synthesis aligns with the

major concerns of benchmark publishing except that SPNs do not

provide privacy protection.

Following prior work on cardinality estimation [13], we em-

ploy binary tree-structured SPNs with sum and product nodes

as internal nodes and leaves. Formally, given a table 𝑇 with at-

tributes 𝑋1, . . . , 𝑋𝑀 , a sum (resp. product) node 𝑣sum (resp. 𝑣prod)

splits the rows (resp. columns) into two subtables 𝑇 [S𝐿],𝑇 [S𝑅],
where S𝐿,S𝑅 are two subsets of row (resp. column) indices. A

leaf node 𝑣leaf represents the marginal distribution of an attribute

Algorithm 1: PrivBench
Input :Database 𝐷
Output :Synthetic database ˆ︁𝐷
Param: Privacy budgets 𝜖𝑠

𝑖
(for SPN construction) and 𝜖

𝑓

𝑖
(for

fanout construction), ∀𝑖 ∈ [𝑛]
1 for each private table𝑇𝑖 of 𝐷 do
2 𝑡𝑖 ← PrivSPN(𝑇𝑖 , 𝜖𝑠𝑖 ) ;
3 for each pair of tables (𝑇𝑖 ,𝑇𝑗 ) where𝑇𝑖 refers to𝑇𝑗 do
4 𝑡 ′

𝑖
← PrivFanout(𝑇𝑖 , 𝑡𝑖 , 𝐹𝐾𝑖,𝑗 , 𝜖 𝑓𝑖 ) ;

5 for each modified SPN 𝑡 ′
𝑖
do

6 ˆ︁𝑇𝑖 ← SampleDataFromSPN(𝑡 ′
𝑖
) ;

7 return ˆ︁𝐷 = { ˆ︁𝑇1, . . . , ˆ︁𝑇𝑛 };
𝑋𝑚,𝑚 ∈ [𝑀] w.r.t. a subset S of rows using a histogram, i.e.,

𝑣leaf = Pr[𝑋𝑚 |S]. Then, the value of a sum node is the weighted

sum of its children 𝑣𝐿, 𝑣𝑅 , i.e., 𝑣sum = 𝑤𝐿 · 𝑣𝐿 + 𝑤𝑅 · 𝑣𝑅 , where
𝑤𝐿 =

|S𝐿 |
|S𝐿 |+|S𝑅 | ,𝑤𝑅 =

|S𝑅 |
|S𝐿 |+|S𝑅 | are weights proportional to the

sizes of the split clusters, while the value of a product node is the

product of its children, i.e., 𝑣prod = 𝑣𝐿 · 𝑣𝑅 . Consequently, the value
of the root node approximates the joint distribution Pr[𝑋1, ..., 𝑋𝑀 ]
for a given table by summing and multiplying the marginal distri-

butions represented by the leaves from bottom to top.

3.2 Overview of PrivBench
As shown in Algorithm 1, PrivBench involves a three-phase process

for database synthesis.

• Private SPN Construction (Lines 1–2). Firstly, we construct an SPN

𝑡𝑖 for each table𝑇𝑖 in the input database 𝐷 . Each SPN 𝑡𝑖 is created

by a differentially private algorithm PrivSPN, where each leaf

represents the marginal of an attribute for some rows.

• Private Fanout Construction (Lines 3–4). Secondly, we complement

each SPN 𝑡𝑖 with some leaf nodes that model primary-foreign key

references to obtain a modified SPN 𝑡 ′
𝑖
. We use a differentially

private algorithm PrivFanout to calculate fanout frequencies for
each foreign key and store them in the complemented leaf nodes.

• SPN-Based Database Synthesis (Lines 5–6) Thirdly, we sample a

table ˆ︁𝑇𝑖 from each modified SPN 𝑡 ′
𝑖
to synthesize a database ˆ︁𝐷 .

3.3 Private SPN Construction
3.3.1 Overview of PrivSPN. Algorithm 2 outlines the process for

constructing an SPN on a single table, which calls Algorithm 5 to

optimize the SPN’s structure. The PrivSPN algorithm recursively

generates a binary tree 𝑡 = (parent, left, right), where parent is a
node, and left, right are the two child subtrees. We divide PrivSPN
into the following three procedures.

• Planning (Operation Planning): We decide an operation op for

the parent node and the privacy budget 𝜖op allocated to op.
• ParentGen (Parent Generation): According to the operation op

and the privacy budget 𝜖op, we generate the parent node.

• ChildrenGen (Children Generation):We further generate the chil-

dren left, right through recursive calls to PrivSPN.

For ease of presentation, we first introduce how the parent and chil-

dren are generated, and then we delve into the Planning procedure.



Algorithm 2: Private SPN Construction PrivSPN(𝑇, 𝜖)
Input : table𝑇 , total privacy budget 𝜖 .

Output :A tree of SPN 𝑡 = (parent, left, right)
1 op, 𝜖op, 𝜖 ← Planning(𝑇, 𝜖 ) ;
2 parent, ( ˜︁S𝐿, ˜︁S𝑅 ) ← ParentGen(𝑇, op, 𝜖op ) ;
3 left, right← ChildrenGen(𝑇, op, ˜︁S𝐿, ˜︁S𝑅, 𝜖 ) ;
4 return (parent, left, right) ;
5 procedure ParentGen(𝑇, op, 𝜖op )
6 if op = OP.LEAF then
7 ˜︁S𝐿, ˜︁S𝑅 ← ∅, ∅;
8 ˜︂ℎ𝑖𝑠 ← his(𝑇 ) + Lap( Δ(his)

𝜖op
) ; parent← LeafNode(˜︂ℎ𝑖𝑠 ) ;

9 else if op = OP.SUM then
10 ˜︁S𝐿, ˜︁S𝑅 ← RowSplit(𝑇, 𝜖op ) ; parent← SumNode( ˜︁S𝐿, ˜︁S𝑅 ) ;
11 else if op = OP.PRODUCT then
12 ˜︁S𝐿, ˜︁S𝑅 ← ColSplit(𝑇, 𝜖op ) ; parent← ProdNode( ˜︁S𝐿, ˜︁S𝑅 ) ;
13 return parent, ( ˜︁S𝐿, ˜︁S𝑅 ) ;
14 procedure ChildrenGen(𝑇, op, ˜︁S𝐿, ˜︁S𝑅, 𝜖 )
15 if op = OP.SUM then
16 𝜖𝐿 ← 𝜖, 𝜖𝑅 ← 𝜖

17 else if op = OP.PRODUCT then

18 𝜖𝐿 ← 𝜖 · 𝜎 (𝑇 [˜︁S𝐿 ])
𝜎 (𝑇 [˜︁S𝐿 ])+𝜎 (𝑇 [˜︁S𝑅 ]) , 𝜖𝑅 ← 𝜖 − 𝜖𝐿

19 if op = OP.LEAF then
20 left← null; right← null;

21 else
22 left← PrivSPN(𝑇 [ ˜︁S𝐿 ], 𝜖𝐿 ) ; right← PrivSPN(𝑇 [ ˜︁S𝑅 ], 𝜖𝑅 ) ;
23 return left, right

Algorithm 3: Row Splitting RowSplit
Input : table𝑇 , privacy budget 𝜖

Output : row partition ( ˜︁S𝐿, ˜︁S𝑅 )
Param: number of iterations 𝐽 , minimum table size 𝛽

1 (S𝐿,0, S𝑅,0 ) ← Sample a row partition such that |S𝐿,0 | = |𝑇 |/2;
2 for 𝑗 from 1 to 𝐽 do
3 𝑐𝐿 ←

∑︁
𝑟 ∈𝑇 [S𝐿,𝑗−1

] 𝑟/|S𝐿,𝑗−1 | // Center of left cluster;

4 𝑐𝑅 ←
∑︁
𝑟 ∈𝑇 [S𝑅,𝑗−1

] 𝑟/|S𝑅,𝑗−1 | // Center of right cluster;

5 diff𝑖 ← dist(𝑇 [𝑖 ] − 𝑐𝐿 ) − dist(𝑇 [𝑖 ] − 𝑐𝑅 ), ∀𝑖 ∈ [ |𝑇 | ];
6 ˜︃diff𝑖 ← diff𝑖 + Lap( Δ(diff𝑖 ) · 𝐽𝜖

), ∀𝑖 ∈ [ |𝑇 | ];
7 S𝐿,𝑗 ← arg𝑖 (˜︃diff𝑖 ≤ 0) ; S𝑅,𝑗 ← arg𝑖 (˜︃diff𝑖 > 0) ;
8 Adjust clusters S𝐿,𝐽 , S𝑅,𝐽 to ensure their sizes are not less than 𝛽 ;

9 return ( ˜︁S𝐿, ˜︁S𝑅 ) = (S𝐿,𝐽 , S𝑅,𝐽 ) ;

3.3.2 Parent generation. We generate a parent node based on the

operation op and perturb it with the privacy budget 𝜖op, as follows.

Case 1: op = OP.LEAF (Line 6).Wegenerate a leaf node LeafNode(˜︂ℎ𝑖𝑠)
with a perturbed histogram

˜︂ℎ𝑖𝑠 . Specifically, the ParentGen proce-

dure first computes a histogram his(𝑇 ) over the table 𝑇 and then

perturbs the histogram by adding some Laplace noise Lap( Δ(his)𝜖op
),

where Δ returns the global sensitivity of a given function 𝑓 , i.e.,

Δ(𝑓 ) = max𝑇,𝑇 ′ |𝑓 (𝑇 ) − 𝑓 (𝑇 ′) |.

Algorithm 4: Column Splitting ColSplit
Input : table𝑇 , privacy budget 𝜖

Output :column partition ( ˜︁S𝐿, ˜︁S𝑅 )
1 for 𝑗 from 1 to |𝑎𝑡𝑡𝑟 (𝑇 ) | do
2 𝑜𝑖 = (S𝐿,𝑗 , S𝑅,𝑗 ) ← Sample a column partition such that

|S𝐿,𝑗 | = |𝑎𝑡𝑡𝑟 (𝑇 ) |/2;
3 𝜌 𝑗 ← NMI(𝑇, (S𝐿,𝑗 , S𝑅,𝑗 ) )

4 ( ˜︁S𝐿, ˜︁S𝑅 ) ← Sample a partition from the set of partitions

𝑂 = {𝑜 𝑗 }∀ 𝑗 with probability defined in Equation (1) ;

5 return ( ˜︁S𝐿, ˜︁S𝑅 ) ;
Case 2: op = OP.SUM (Line 9). We call the RowSplit mechanism

(see Algorithm 3) to compute a differentially private row parti-

tion (˜︁S𝐿, ˜︁S𝑅), where ˜︁S𝐿, ˜︁S𝑅 are two subsets of row indices. Then,

the row partition yields the sum node SumNode(˜︁S𝐿, ˜︁S𝑅).
For row splitting, our strategy is to group similar rows into

the same cluster. By generating distinct segments, SPNs can more

effectively learn and represent the local distributions of different

data subsets. To achieve this, we adopt the DP-based 𝐾-Means

algorithm, DPLloyd [37], which groups data points into 𝐾 clusters

by comparing their distances to 𝐾 cluster centers. However, the

output of DPLloyd is the cluster centers rather than the data points

within the clusters, which does not work in our task. Therefore, we

adapt DPLloyd to the RowSplit mechanism to support yielding a

row partition (˜︁S𝐿, ˜︁S𝑅) as output.
Concretely, as shown in Algorithm 3, we first uniformly sample a

row partition (S𝐿,0,S𝑅,0) where the clusters are half-sized (Line 1).

Then, we update the partition through 𝐽 iterations. In each iteration

𝑗 , we first calculate the centers 𝑐𝐿, 𝑐𝑅 of the clusters S𝐿,𝑗−1,S𝑅,𝑗−1

(Lines 3-4). Next, for each row𝑇 [𝑖], we compute the difference diff𝑖
between its distances dist(𝑇 [𝑖], 𝑐𝐿), dist(𝑇 [𝑖], 𝑐𝑅) to the two cen-

ters (Line 5) and add some Laplace noise Lap( Δ(diff𝑖 ) · 𝐽𝜖 ) to ensure

DP (Line 6), where Δ(diff𝑖 ) equals the absolute difference between
the supremum and infimum of the distance function dist𝑖 . Then, if
the perturbed difference

˜︃diff𝑖 is positive, the row𝑇 [𝑖] is considered
closer to the center 𝑐𝑅 and thus should be assigned to the right

cluster S𝑅,𝑗 ; otherwise, it is assigned to S𝐿,𝑗 (Line 7). After 𝐽 itera-
tions, we adjust the sizes of the clusters S𝐿,𝐽 ,S𝑅,𝐽 through random

sampling to ensure each of them has at least 𝛽 rows (Line 8); this

adjustment enhances the utility of the perturbed histogram in each

leaf node, as a larger histogram is more resilient to DP noise. Note

that the distance function diff𝑖 is customizable. In our experiments,

we use the L1 distance for each numerical attribute and the Ham-

ming distance for each categorical attribute; the distance function

is defined as the sum of the attribute-wise distances.

Case 3: op = OP.PRODUCT (Line 11). We generate a product node

ProdNode(˜︁S𝐿, ˜︁S𝑅) by calling the ColSplit mechanism (see Algo-

rithm 4). ColSplit determines a differentially private column parti-

tion (˜︁S𝐿, ˜︁S𝑅), where ˜︁S𝐿, ˜︁S𝑅 are subsets of column indices.

For column splitting, our goal is to divide the given table into

two subtables with low correlation so that the product of the mar-

ginal distributions of the subtables approximates the original joint

distribution. Therefore, the ColSplit mechanism attempts to mini-

mize the normalized mutual information (NMI, see Definition 3) of



the split subtables. As shown in Algorithm 4, we first construct a

candidate set 𝑂 of column partitions (Lines 1-3) and then sample a

partition from the candidates as the output (Lines 4-5). Note that we

conduct |𝑎𝑡𝑡𝑟 (𝑇 ) | iterations to select |𝑎𝑡𝑡𝑟 (𝑇 ) | column partitions,

rather than all possible column partitions, as the candidate set be-

cause it makes the computation tractable. In each iteration 𝑗 , we

uniformly sample a partition 𝑜 𝑗 = (S𝐿,𝑗 ,S𝑅,𝑗 ) from all half-sized

column partitions such that |S𝐿,𝑗 | = |𝑎𝑡𝑡𝑟 (𝑇 ) |/2 since we observed

that subtables with similar dimensionalities generally exhibit lower

NMI. Subsequently, we calculate NMI 𝜌 𝑗 for candidate 𝑜 𝑗 (Line

3). After the iterations, we sample a partition (˜︁S𝐿, ˜︁S𝑅) from the

candidate set 𝑂 with the following probability distribution (Line 4):

Pr[(˜︁S𝐿, ˜︁S𝑅) = 𝑜 𝑗 ] = exp( −𝜖 ·𝜌 𝑗
2Δ(NMI |𝑂 ) )∑︁

𝑗 ′∈
[︁
|𝑎𝑡𝑡𝑟 (𝑇 ) |

]︁ exp( −𝜖 ·𝜌 𝑗 ′
2Δ(NMI |𝑂 ) )

, (1)

where Δ(NMI|𝑂) = max𝑇,𝑇 ′,𝑜∈𝑂 |NMI(𝑇, 𝑜) − NMI(𝑇 ′, 𝑜) | is the
sensitivity of the NMI w.r.t candidates 𝑂 . Intuitively, the smaller

the correlation between subtables 𝑇 [˜︁S𝐿],𝑇 [˜︁S𝑅], the lower the in-
formation loss from column splitting. Therefore, the lower the NMI

𝜌 𝑗 , the higher the probability of sampling the partition 𝑜 𝑗 in Equa-

tion (1). Moreover, as the privacy budget 𝜖 decreases, the sampling

probabilities become closer to a uniform distribution, increasing

the likelihood of outputting a partition with high correlation.

Definition 3 (Normalized Mututal Information). The en-
tropy𝐻 of a table𝑇 is𝐻 (𝑇 ) = ∑︁

𝑥∈X(𝑇 ) Pr[𝑥 |𝑇 ] log
2

1

Pr[𝑥 |𝑇 ] , where
X(𝑇 ) is the set of row values in 𝑇 . For a row or column partition
(S𝐿,S𝑅) of table 𝑇 , the NMI is:

NMI(𝑇, (S𝐿,S𝑅)) =
𝐻 (𝑇 [S𝐿]) + 𝐻 (𝑇 [S𝑅]) − 𝐻 (𝑇 )

sup(𝐻 (𝑇 )) ,

where sup(𝐻 (𝑇 )) = log
2
|𝑇 | is the upper bound of 𝐻 (𝑇 ).

3.3.3 Children generation. If op = OP.LEAF, the children are set

to null because the parent node is a leaf node (Lines 19–20). Other-
wise, we generate the left and right subtrees for the split subtables
𝑇 [˜︁S𝐿],𝑇 [˜︁S𝑅]. Specifically, we first allocate the remaining privacy

budget 𝜖 among the subtrees (Lines 15–18), which will be discussed

in Section 4.1. Then, given the allocated privacy budgets 𝜖𝐿, 𝜖𝑅 ,

we call the PrivSPN procedure for the subtables 𝑇 [˜︁S𝐿],𝑇 [˜︁S𝑅] to
generate the left and right subtrees, respectively (Line 22).

3.3.4 Planning. The Planning procedure takes the role of deter-

mining an operation op for the parent node, which can be creating

a leaf/sum/product node. Since all these types of operations should

be performed in a differentially private manner, Planning also allo-

cates a privacy budget 𝜖op for the parent node and calculates the

remaining privacy budget 𝜖 for the children. Concretely, Planning
proceeds as follows.

1. Leaf node validation (Lines 1–2). We validate if we should gener-

ate a leaf node as the parent node. When the given table has only

one attribute, i.e., |𝑎𝑡𝑡𝑟 (𝑇 ) | = 1, the operation must be creating

a leaf node, i.e.,← OP.LEAF, and all the given privacy budget 𝜖

should be allocated for op, i.e., 𝜖op = 𝜖 .

2. Correlation trial (procedure CorrTrial).We preliminarily test the

performance of column splitting, which will guide the selection

of the operation op through the subsequent DecideOP procedure.

Algorithm 5: Operation Planning Planning(𝑇, 𝜖)
Input : table𝑇 , privacy budget 𝜖

Output :next operation op, privacy budget 𝜖op for op, remaining

privacy budget 𝜖

Param: threshold for column splitting 𝛼 , minimum table size 𝛽 ,

budget ratios 𝛾1, 𝛾2

1 if |𝑎𝑡𝑡𝑟 (𝑇 ) | = 1 then
2 op← OP.LEAF; 𝜖op ← 𝜖 ; 𝜖 ← 0;

3 else
4 �̃�, 𝜖eval ← CorrTrial(𝑇, 𝜖 ) ;
5 op← DecideOP(𝑇, �̃� ) ;
6 𝜖op, 𝜖 ← AllocBudgetOP(𝑇, op, 𝜖, 𝜖eval ) ;
7 return op, 𝜖op, 𝜖 ;
8 procedure CorrTrial(𝑇, 𝜖 )
9 if |𝑇 | ≥ 2𝛽 and |𝑎𝑡𝑡𝑟 (𝑇 ) | > 1 then
10 𝜖eval ← 𝜖 · 𝛾1/𝜎 (𝑇 ) ;
11 ( ˜︁S𝐿, ˜︁S𝑅 ) ← ColSplit(𝑇, 𝜖eval · 𝛾2 ) ;
12 �̃� ← NMI(𝑇, ( ˜︁S𝐿, ˜︁S𝑅 ) ) + Lap( Δ(NMI)

𝜖eval · (1−𝛾2 ) ) ;

13 else
14 𝜖eval ← 0; �̃� ← 0;

15 return �̃�, 𝜖eval
16 procedure DecideOP(𝑇, �̃� )
17 if |𝑇 | ≥ 2𝛽 and |𝑎𝑡𝑡𝑟 (𝑇 ) | > 1 then
18 if �̃� ≤ 𝛼 then
19 op← OP.PRODUCT

20 else
21 op← OP.SUM

22 else
23 op← OP.PRODUCT

24 return op

25 procedure AllocBudgetOP(𝑇, op, 𝜖, 𝜖eval )
26 if op = OP.PRODUCT and |𝑎𝑡𝑡𝑟 (𝑇 ) | = 2 then
27 𝜖op ← 0;

28 else
29 𝜖op ← 𝜖/𝜎 (𝑇 ) − 𝜖eval;
30 return 𝜖op, 𝜖 − 𝜖eval − 𝜖op

Specifically, we consume a privacy budget 𝜖eval · 𝛾2 to generate a

trial column partition (˜︁S𝐿, ˜︁S𝑅) and an additional privacy budget

of 𝜖eval · (1 − 𝛾2) to compute its noisy NMI �̃� (Lines 11-12):

�̃� = NMI(𝑇, (˜︁S𝐿, ˜︁S𝑅)) + Lap( Δ(NMI)
𝜖eval · (1 − 𝛾2)

) .

Intuitively, the noisy NMI metric �̃� serves as a predictor of whether

the column splitting in the ParentGen procedure will result in a

high-fidelity data partition, which is useful for planning the next

operation in DecideOP. Note that when either column or row split-

ting is infeasible, we do not need to evaluate the correlation since

the operation must be the feasible one (Line 14).

3. Operation decision (procedure DecideOP). We determine the op-

eration op for the parent node. When the size of the given table

is too small to allow for row splitting and the table contains more

than one attribute, the operation must be column splitting (Lines



Algorithm 6: Private Fanout Construction PrivFanout
Input :Table𝑇𝑖 , SPN 𝑡𝑖 , foreign key 𝐹𝐾𝑖,𝑗 ,privacy budget 𝜖

Output :Modified SPN 𝑡 ′
𝑖

1 A ← Find the attribute with the most leaf nodes in 𝑡𝑖 ;

2 𝑡 ′
𝑖
←Make a copy of 𝑡𝑖 ;

3 for each leaf node leafA of 𝑡𝑖 of A do
4 for each value 𝑓 𝑘 of 𝐹𝐾𝑖,𝑗 do
5 F𝑖,𝑗 [ 𝑓 𝑘 ] ← count the rows in leafA for which the foreign

key 𝐹𝐾𝑖,𝑗 equals 𝑓 𝑘 ;

6 ˜︁F𝑖,𝑗 ← F𝑖,𝑗 + Lap( Δ(F𝑖,𝑗 )𝜖
) ;

7 leaf𝐹𝐾𝑖,𝑗 ← LeafNode( ˜︁F𝑖,𝑗 ) ;
8 parent← ProdNode(A, 𝐹𝐾𝑖,𝑗 ) ;
9 Replace leafA in 𝑡 ′

𝑖
with subtree (parent, leafA , leaf𝐹𝐾𝑖,𝑗 )

22–23). However, when both column splitting and row splitting are

feasible, we choose one of them according to whether the noisy

NMI �̃� exceeds a predefined threshold 𝛼 (Lines 17–21). Intuitively,

when the correlation (measured by �̃�) between the vertically split

subtables is too high, the information loss regarding data distribu-

tion caused by the column splitting is excessive; consequently, row

splitting should be prioritized in this case.

4. Budget allocation (procedure AllcBudgetOP).We allocate privacy

budgets 𝜖op, 𝜖 to the parent node and its children, respectively. In

the case where the operation is to vertically split a table with only

two attributes, no privacy budget should be consumed for the parent

node because there is only one possible column partition (Lines 26–

27). In other cases, we uniformly allocate privacy budgets among

all nodes of the SPN tree. That is, we divide the privacy budget 𝜖 by

a scale metric 𝜎 (𝑇 ) to determine the privacy budget 𝜖eval + 𝜖op for

correlation trial and parent node generation, where 𝜎 (𝑇 ) represents
the maximum possible number of nodes in the SPN tree of table 𝑇 :

𝜎 (𝑇 ) = 2|𝑇 | · |𝑎𝑡𝑡𝑟 (𝑇 ) |/𝛽 − 1.

Then, we allocate a privacy budget 𝜖eval = 𝜖/𝜎 (𝑇 ) · 𝛾1 (Line 10) for

correlation trial and 𝜖op = 𝜖/𝜎 (𝑇 ) − 𝜖eval (Line 29) for parent node
generation such that 𝜖eval + 𝜖op = 𝜖/𝜎 (𝑇 ), where 𝛾1 ∈ [0, 1].

3.4 Private Fanout Construction
After constructing SPNs for all private tables in the input database,

we follow prior work [44, 45] to utilize fanout distribution, i.e., the
distribution of the foreign key in the referencing table, to model

their primary-foreign key references. However, to maintain fanout

distributions for all joined keys, prior work [44, 45] uses a full outer

join of all the tables, which causes large space overhead.

To address this issue, we propose Algorithm 6, which models

primary-foreign key references by augmenting SPNs with leaf

nodes that store fanout distributions. Specifically, to construct the

reference relation between tables 𝑇𝑖 and 𝑇𝑗 where 𝑇𝑖 refers to 𝑇𝑗 ,

we first find a certain attributeA and traverse all its leaf nodes. For

each leaf node leafA , we identify the rows in 𝑇𝑖 whose column of

attribute A is stored in leafA and count the fanout frequencies of

the foreign key 𝐹𝐾𝑖, 𝑗 w.r.t. the identified rows in a fanout table F𝑖, 𝑗
(Lines 3–5). Then, the fanout table is perturbed by adding some

Laplace noise and stored in a new leaf node leaf𝐹𝐾𝑖,𝑗 (Lines 6–7).
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Figure 3: Fanout table construction.

Finally, we replace leafA with a product node that connects leafA
and leaf𝐹𝐾𝑖,𝑗 (Lines 8–9). Additionally, to minimize the impact of

Laplace noise on the fanout distribution, we require attribute A
to have the largest leaf nodes. Intuitively, the overall fanout distri-

bution of a foreign key is the average of the distributions stored

in its leaf nodes. Thus, the variance caused by the Laplace noise

decreases as the number of leaf nodes increases.

Example 2. Figure 3 shows an example of how PrivBench aug-

ments the original SPN 𝑡𝑖 with the leaf nodes of the foreign key

H − ID. First, we identify that the attribute Sex possesses the most

leaf nodes in 𝑡𝑖 . For each leaf node of attribute Sex, we locate the
corresponding foreign keys using the row indices. Next, we com-

pute the fanout table, perturb the fanouts, and store the results in a

new leaf node. Finally, the new leaf node is added to the SPN as a

sibling to the leaf node of attribute Sex and as the child of a newly

added product node, resulting in a modified SPN 𝑡 ′
𝑖
.

3.5 SPN-Based Database Synthesis
Algorithm 7 shows how we synthesize a table ˆ︁𝑇𝑖 given an SPN 𝑡𝑖 . If

the root node of 𝑡𝑖 is a leaf node, we synthesize a table ˆ︁𝑇𝑖 by his-

togram sampling. Specifically, each column ˆ︁𝑇𝑖 is sampled from the

marginal distribution represented by the perturbed histogram or

fanout table stored in the leaf (Lines 1–2), and the size of ˆ︁𝑇𝑖 matches

the total count of the histogram or fanout table. If it is a sum (prod-

uct, resp.) node, we recursively apply the SampleDataFromSPN
procedure to the left and right children of 𝑡𝑖 and vertically (hor-

izontally, resp.) concatenate the returned tables ˆ︁𝑇𝐿 and ˆ︁𝑇𝑅 (Lines

4–9). Finally, we obtain a table ˆ︁𝑇𝑖 that has a data distribution sim-

ilar to that of the private table 𝑇𝑖 . By synthesizing tables for all

modified SPNs, we obtain a synthetic database ˆ︁𝐷 . Since the input
SPN 𝑡𝑖 is constructed in a differentially private manner, sampling

data from it does not consume any privacy budget according to the

post-processing property of DP [8].

4 THEORETICAL ANALYSIS
In this section, we provide a rigorous analysis of the privacy guar-

antee and time complexity of PrivBench. All the missing proofs can

be found in our technical report [11].



Algorithm 7: SampleDataFromSPN

Input :SPN 𝑡𝑖
Output :Synthetic table ˆ︁𝑇𝑖

1 if 𝑡𝑖 .root is a leaf node then
2 ˆ︁𝑇𝑖 ← Sample data from marginal distribution represented by

histogram 𝑡𝑖 .˜︂his or fanout table 𝑡𝑖 .˜︁F𝑖,𝑗
3 else
4 ˆ︁𝑇𝐿 ← SampleDataFromSPN(𝑡𝑖 .left) ;
5 ˆ︁𝑇𝑅 ← SampleDataFromSPN(𝑡𝑖 .right) ;
6 if 𝑡𝑖 .root is a sum node then
7 ˆ︁𝑇𝑖 ← Vertically concatenate ˆ︁𝑇𝐿 and ˆ︁𝑇𝑅 ;
8 if 𝑡𝑖 .root is a product node then
9 ˆ︁𝑇𝑖 ← Horizontally concatenate ˆ︁𝑇𝐿 and ˆ︁𝑇𝑅 ;

10 return ˆ︁𝑇𝑖
4.1 Privacy Analysis on PrivSPN
In this subsection, we first prove that the Planning, ParentGen, and
ChildrenGen procedures satisfy DP, and then prove that PrivSPN
therefore achieves DP.

4.1.1 Analysis of Planning. The Planning procedure consists of

the CorrTrial, DecideOP, and AllocBudgetOP subprocedures. If the

subprocedures satisfy DP, we can conclude that Planning ensures
DP according to the sequential composition theorem of DP [8].

CorrTrial. (1) When |𝑇 | ≥ 2𝛽 and |𝑎𝑡𝑡𝑟 (𝑇 ) | > 1, the CorrTrial pro-
cedure employs the (𝜖eval ·𝛾2)-DP mechanism ColSplit(𝑇, 𝜖eval ·𝛾2)
to compute a perturbed partition

(︁ ˜︁S𝐿, ˜︁S𝑅 )︁ . Then, it calculates the
NMI of (˜︁S𝐿, ˜︁S𝑅) and injects the Laplace noise Lap( Δ(NMI)

𝜖eval · (1−𝛾2 ) ) into
it, which ensures

(︁
𝜖eval · (1 − 𝛾2)

)︁
-DP. Consequently, according to

the sequential composition theorem of DP [8], CorrTrial(𝑇, 𝜖) sat-
isfies 𝜖eval-DP. (2) When |𝑇 | < 2𝛽 or |𝑎𝑡𝑡𝑟 (𝑇 ) | = 1, since varying

the value of any row in 𝑇 does not have any impact on the output

(�̃�, 𝜖eval), CorrTrial(𝑇, 𝜖) satisfies 0-DP according to Definition 1.

Note that we adopt the bounded DP interpretation; in the case of

unbounded DP, adding/removing a row from 𝑇 causes the proce-

dure to take the other conditional branch (i.e., Lines 9–12), thereby

breaking the DP guarantee.

DecideOP and AllocBudgetOP. Similar to the second case ofCorrTrial,
for both proceduresDecideOP and AllocBudgetOP, because chang-
ing the value of any row in 𝑇 does not affect the table size |𝑇 | and
the number of attributes |𝑎𝑡𝑡𝑟 (𝑇 ) |, it also does not impact their

outputs. Therefore, both procedures ensure 0-DP.

Planning. When |𝑎𝑡𝑡𝑟 (𝑇 ) | = 1, Planning satisfies 0-DP since any

change to 𝑇 does not impact the output (Lines 1–2); otherwise, as

it sequentially combines CorrTrial, DecideOP, and AllocBudgetOP,
Planning(𝑇, 𝜖) satisfies 𝜖eval-DP according to the sequential compo-

sition theorem of DP [8], where the value of 𝜖eval differs in different

cases (see Lines 10 and 14).

Lemma 1. If |𝑎𝑡𝑡𝑟 (𝑇 ) | > 1, Planning(𝑇, 𝜖) satisfies table-level(︁
𝜖 · 𝛾1/𝜎 (𝑇 )

)︁
-DP; otherwise, it satisfies table-level 0-DP.

4.1.2 Analysis of ParentGen. Then, we show that in any case of

the given operation op, ParentGen achieves DP. (1) When op =

OP.LEAF, we ensure DP using the Laplace mechanism. That is, we

inject Laplacian noise Lap( Δ(his)𝜖op
) into the histogram his(𝑇 ), which

satisfies 𝜖op-DP. (2) When op = OP.SUM, we call RowSplit(𝑇, 𝜖op)
to generate a perturbed row partition (˜︁𝑆𝐿,˜︁𝑆𝑅), which achieves

𝜖op-DP. (3) When op = OP.PRODUCT, our column splitting mech-

anism ColSplit(𝑇, 𝜖op) is essentially an instance of the exponential

mechanism [9], thereby guaranteeing 𝜖op-DP.

Lemma 2. ParentGen(𝑇, op, 𝜖op) satisfies tabel-level 𝜖op-DP.

4.1.3 Analysis of ChildrenGen. Next, we analyze the DP guaran-

tee of ChildrenGen(𝑇, op, ˜︁S𝐿, ˜︁S𝑅, 𝜖) in different cases. (1) When

op = OP.LEAF, since ChildrenGen always returns two null chil-

dren, it must satisfy 0-DP. Therefore, in this case, PrivSPN(T, 𝜖)
achieves 𝜖-DP. (2) When op = OP.SUM, Theorem 3 demonstrates

a parallel composition property of DP in the case of row split-

ting: If constructing the left and right subtrees satisfies 𝜖𝐿-DP and

𝜖𝑅-DP, respectively, then the entire process of constructing both

subtrees satisfies max{𝜖𝐿, 𝜖𝑅}-DP. Therefore, to optimize the util-

ity of the subtrees, we maximize each subtree’s privacy budget by

setting 𝜖𝐿 = 𝜖𝑅 = 𝜖 . Note that Theorem 3 differs from the cele-

brated parallel composition theorem [8]: their theorem assumes

unbounded DP while our theorem considers bounded DP. (3) When

op = OP.PRODUCT, we allocate privacy budgets based on the

scales of the subtrees (Line 18). Intuitively, a subtree with a larger

scale should be assigned with a larger privacy budget to balance

their utility. Thus, their privacy budgets 𝜖𝐿, 𝜖𝑅 are proportional

to their scales 𝜎 (𝑇 [˜︁𝑆𝐿]), 𝜎 (𝑇 [˜︁𝑆𝑅]). Note that publishing the scales

does not consume any privacy budget since varying any row of 𝑇

does not change 𝜎 (𝑇 [˜︁𝑆𝐿]) and 𝜎 (𝑇 [˜︁𝑆𝑅]).
Theorem 3 (Parallel composition under boundedDP). Given

a row partition (S1, . . . ,S𝐾 ), publishingM1 (𝑇 [S1]), . . . ,M𝐾 (𝑇 [S𝐾 ])
satisfies table-level max{ 𝜖1, . . . , 𝜖𝐾 }-DP, where S𝑘 is a subset of row
indices andM𝑘 is a table-level 𝜖𝑘 -DP algorithm, ∀𝑘 ∈ [𝐾].

Consequently, when op = OP.SUM or op = OP.PRODUCT,
we can prove the DP guarantee by mathematical induction: when

PrivSPN(𝑇 [˜︁𝑆𝐿], 𝜖𝐿) (resp. PrivSPN(𝑇 [˜︁𝑆𝑅], 𝜖𝑅)) returns a subtree

with only a leaf node, it satisfies 𝜖𝐿-DP (resp. 𝜖𝑅-DP); otherwise,

assuming PrivSPN(𝑇 [˜︁𝑆𝐿], 𝜖𝐿) (resp. PrivSPN(𝑇 [˜︁𝑆𝑅], 𝜖𝑅)) satisfies
𝜖𝐿-DP (resp. 𝜖𝑅-DP), according to the sequential composition theo-

rem [8] or Theorem 3, we conclude thatChildrenGen(𝑇, op, ˜︁S𝐿, ˜︁S𝑅, 𝜖)
satisfies 𝜖-DP, where 𝜖 = 𝜖𝐿 + 𝜖𝑅 or 𝜖 = max{𝜖𝐿, 𝜖𝑅}.

Lemma 3. When op = OP.LEAF, ChildrenGen(𝑇, op, ˜︁S𝐿, ˜︁S𝑅, 𝜖)
satisfies table-level 0-DP; otherwise, it satisfies table-level 𝜖-DP.

4.1.4 Analysis of PrivSPN. Based on Lemmas 1, 2, and 3, we con-

clude the DP guarantee of PrivSPN through sequential composition.

Lemma 4. PrivSPN(𝑇, 𝜖) satisfies table-level 𝜖-DP.

In addition, since PrivSPN allocates the total privacy budget

𝜖 from the root to the leaf nodes in a top-down manner, it may

result in insufficient budgets allocated to the leaves. Consequently,

a practical question arises: If we would like to guarantee a privacy

budget of 𝜖leaf for each leaf node, how large should the total privacy

budget 𝜖 be? Theorem 4 answers this question: A privacy budget

𝜖 =
(︁
𝜖leaf · 𝜎 (𝑇 )

)︁
is sufficient. This also explains why the privacy



budgets 𝜖𝐿 and 𝜖𝑅 should be proportional to the corresponding

scales 𝜎 (𝑇 [˜︁𝑆𝐿]) and 𝜎 (𝑇 [˜︁𝑆𝑅]) in Line 18 of Algorithm 2.

Theorem 4. Consider a procedure PrivSPN(𝑇, 𝜖) that publishes
an SPN with 𝐾 leaf nodes PrivSPN(𝑆1, 𝜖leaf), . . . , PrivSPN(𝑆𝐾 , 𝜖leaf),
where 𝑆𝑘 is a single-column subtable of table𝑇 ,∀𝑘 ∈ [𝐾].PrivSPN(𝑇, 𝜖)
satisfies table-level

(︁
𝜖leaf · 𝜎 (𝑇 )

)︁
-DP.

4.2 Privacy Analysis on PrivFanout
For each leaf node leaf𝐹𝐾 , PrivFanout injects the Laplace noise into
the fanout table F𝑖, 𝑗 (Line 6), which implements an 𝜖-differentially

private Laplace mechanism. Then, according to Theorem 3, pub-

lishing all the leaf nodes leaf𝐹𝐾 with perturbed fanout tables also

satisfies 𝜖-DP due to the property of parallel composition. Therefore,

PrivFanout ensures DP.

Lemma 5. PrivFanout(𝑇𝑖 , 𝑡𝑖 , 𝐹𝐾𝑖, 𝑗 , 𝜖) satisfies table-level 𝜖-DP.

4.3 Privacy Analysis on PrivBench
Given that both PrivSPN and PrivFanout satisfy DP, the DP guaran-

tee of the PrivBench algorithm is established according to Theorem

5. Note that to measure the indistinguishability level of database-

level DP, we cannot simply accumulate the privacy budgets 𝜖𝑖
assigned to each private table 𝑇𝑖 ∈ 𝐷 for table-level DP. Intuitively,

while table-level DP only guarantees the indistinguishability of

neighboring tables, database-level DP requires indistinguishability

of two tables that differ in at most 𝜏𝑖 tuples because those tuples

may depend on the same tuple in the primary private table. Con-

sequently, as shown in Corollary 1, the indistinguishability levels

of procedures PrivSPN and PrivFanout at the table level should

be reduced by factor 𝜏𝑖 for database-level DP. Therefore, to ensure

database-level 𝜖-DP for PrivBench, we can allocate the total privacy
budget 𝜖 as follows:

𝜖𝑠𝑖 =
𝜖 · 𝛾

𝜏1 + · · · + 𝜏𝑛
, 𝜖

𝑓

𝑖
=

𝜖 · (1 − 𝛾)
𝜏1 · |𝐹𝐾 (𝑇1) | + · · · + 𝜏𝑛 · |𝐹𝐾 (𝑇𝑛) |

,

where 𝛾 ∈ [0, 1] is the ratio of privacy budget allocated for SPN

construction, and |𝐹𝐾 (𝑇𝑖 ) | is the number of foreign keys in table𝑇𝑖 .

In our experiments, we follow the above setting to allocate privacy

budgets 𝜖𝑠
𝑖
, 𝜖𝑠
𝑓
in PrivBench.

Theorem 5. Given thatM𝑖 satisfies table-level 𝜖𝑖 -DP for all 𝑖 ∈
[𝑛], the composite mechanismM(𝐷) =

(︁
M1 (𝑇1), ...,M𝑛 (𝑇𝑛)

)︁
sat-

isfies database-level (∑︁𝑖∈[𝑛] 𝜏𝑖 · 𝜖𝑖 )-DP.
Corollary 1 (of Theorem 5). PrivBench satisfies database-level

(∑︁𝑖∈[𝑛] 𝜏𝑖 · 𝜖𝑠𝑖 +∑︁
𝑇𝑖 refers to𝑇𝑗 𝜏𝑖 · 𝜖

𝑓

𝑖
)-DP.

4.4 Time Complexity Analysis
We show that PrivBench(𝐷) completes in polynomial time. (1)

To construct a private SPN 𝑡𝑖 for a table 𝑇𝑖 , PrivSPN needs to

recursively call itself to generate a full binary tree, where each

node requires one call of PrivSPN. Because each leaf node stores

a single-column subtable of 𝑇𝑖 with at least 𝛽 rows and one at-

tribute, 𝑡𝑖 can have at most ( |𝑎𝑡𝑡𝑟 (𝑇𝑖 ) | · |𝑇𝑖 |/𝛽) leaf nodes. Conse-
quently, 𝑡𝑖 can have at most (2|𝑎𝑡𝑡𝑟 (𝑇𝑖 ) | · |𝑇 |/𝛽 − 1) nodes, which
can be computed by PrivSPN(𝑇𝑖 , 𝜖𝑠𝑖 ) with O(|𝑎𝑡𝑡𝑟 (𝑇𝑖 ) | · |𝑇𝑖 |) re-
cursive calls. Then, we can easily observe that the non-recursive
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Figure 4: An example of Query Heat Map for a given query.
The edge values indicate the proportions of rows assigned to
each subtree of a sum node, while the node values represent
the selectivities for the given query.

work including running the Planning and ParentGen procedures

can finish in polynomial time. Therefore, PrivSPN(𝑇𝑖 , 𝜖𝑠𝑖 ) completes

in polynomial time. (2) To construct a fanout table for each pair

of referential tables 𝑇𝑖 ,𝑇𝑗 , PrivFanout needs to enumerate at most

( |𝑎𝑡𝑡𝑟 (𝑇𝑖 ) | · |𝑇𝑖 |/𝛽) leaf nodes of 𝑡𝑖 to replace each leaf with a subtree,
which finishes in O(|𝑎𝑡𝑡𝑟 (𝑇𝑖 ) | · |𝑇𝑖 |) time. (3) For each modified SPN

𝑡 ′
𝑖
, SampleDataFromSPN(𝑡 ′

𝑖
) requires O(|𝑎𝑡𝑡𝑟 (𝑇𝑖 ) | · |𝑇𝑖 |) recursive

calls and some polynomial-time non-recursive work; thus, it fin-

ishes in O(|𝑎𝑡𝑡𝑟 (𝑇𝑖 ) | · |𝑇𝑖 |) time. Given that PrivSPN, PrivFanout,
and SampleDataFromSPN finish in polynomial time, PrivBench

completes in polynomial time.

Lemma 6. Given a database 𝐷 = {𝑇1, . . . ,𝑇𝑛}, PrivBench(𝐷) fin-
ishes in O

(︁ ∑︁
𝑖∈[𝑛] poly( |𝑎𝑡𝑡𝑟 (𝑇𝑖 ) |, |𝑇𝑖 |)

)︁
time.

5 DISCUSSION
In this section, we discuss several practical issues regarding PrivBench.

Privacy-preserving/secure data valuation. In recent years, research

on data trading has been gaining increasing attention in the data-

base community [6, 20, 23, 25, 48–50]. A key research question

is how to address the Arrow Information Paradox for privacy-

preserving/secure data valuation. Specifically, since the utility of

data is task-specific, data buyers often need to test the data to de-

termine its value before reaching a deal. However, once a buyer

gains access to the data, the seller faces the risk of the data be-

ing replicated without payment. To tackle this issue for trading

machine learning models, Zheng et al. [49] utilized homomorphic

encryption (HE) to enable buyers to evaluate the value of data in

an encrypted environment. PrivBench can also address the paradox

by allowing buyers to assess the value of data based on synthetic

databases while ensuring the privacy and security of the original

data. Compared to HE-based methods, PrivBench-empowered data

valuation, though sacrificing some accuracy due to the injection

of DP noise, offers better computational efficiency and facilitates

trustworthy, real-time data trading.

Parameter selection. Here, we discuss how to configure the parame-

ters of PrivBench. The privacy budget 𝜖 is a general parameter in

DP, and various methods have been proposed for selecting it, such

as economic methods [14] or voting mechanisms [18]. The other

parameters, including 𝛼 , 𝛽 , 𝛾 , 𝛾1, and 𝛾2, however, are unique to

PrivBench and can be determined empirically. In practice, since DP

assumes that the benchmark publisher is trusted, they can access



Table 2: Summary of datasets, workloads, and baselines.

Dataset #(Private) Tables (#Rows, #Cols.) of Private Table Workload Baseline

Adult 1 (1) (45222, 15) SAM-1000

PrivSyn, PrivBayes, AIM, DataSynthesizer, MST, Exponential-PreFair,

Greedy-PreFair, DPGAN (GPU-accelerated), PrivMRF (GPU-accelerated)

California 2 (2)

Primary: (616115, 10)

Secondary: (1690642, 16)
California-400 PrivLava (GPU-accelerated)

JOB-light 6 (2)

Primary: (2283757, 2)

Secondary: (35824707, 3)
JOB-229, MSCN-226 PrivLava (GPU-accelerated)

both the original and synthetic data to evaluate the latter’s quality

in terms of data distribution similarity and query runtime similar-

ity. Therefore, every time the publisher releases a benchmark, they

can incrementally optimize the parameters based on experimental

results to improve the performance of future benchmarks. Addi-

tionally, in our experiments, we apply the same parameters to all

datasets. The results demonstrate that PrivBench consistently out-

performs other methods, which suggests the transferability of the

parameter settings among different datasets. In other words, even

when adopting the same parameters for different benchmarking

tasks, publishers still can achieve high-quality synthetic databases.

Visualization. Visualization enables us to intuitively evaluatewhether
the data generated by PrivBench closely approximates the origi-

nal data as a benchmark. As shown in Figure 4, after synthesizing

data using PrivBench, we can obtain a pair of SPNs built on the

original and synthetic data, respectively. After testing a bundle of

queries, we can determine the selectivity value for each leaf node.

Subsequently, we can color the leaf nodes based on the magnitude

of the selectivity value, with darker colors indicating higher values,

creating a colored SPN. Ultimately, by comparing the colored SPN

of the original data with that of the synthetic data, we can assess

whether the two sets of data perform similarly in benchmarking.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Settings

Research questions. In this section, we conduct extensive experi-

ments to answer the following research questions.

• Data distribution similarity: Is the database synthesized by

PrivBench closer to the original database in data distribution?

• Query runtime similarity: For executing query workloads,

is the database synthesized by PrivBench closer to the original

database in terms of query runtime performance?

• Synthesis time: Can PrivBench synthesize databases efficiently?

Datasets, query workloads, and baselines.Weuse the following datasets,

queryworkloads, and baselines to verify the performance of PrivBench,

which are summarized in Table 2.

The Adult dataset [17] contains a single private table of cen-

sus information about individuals. We execute SAM-1000 [44], a

workload with 1000 randomly generated queries, to evaluate the

query runtime performance of PrivBench and baselines. The base-

lines cover mainstream differentially private single-relation data

synthesis methods, including DataSynthesizer [32], PrivBayes [46],

PrivSyn [47],MST [28], PrivMRF [3], AIM [29], Exponential-PreFair [34],

Greedy-PreFair [34], and DPGAN [26]. Note that PrivMRF is the

single-relation version of PrivLava [4].

The California dataset [4] consists of two private tables about

household information. We randomly generate 400 queries follow-

ing the method from prior work [16] to create the query workload

for this dataset, named California-400. We use PrivLava [4] as the

sole baseline, as it is the only SOTA method that supports multi-

relation database synthesis.

The JOB-light dataset [44] includes six tables related to movies,

which are extracted from the Internet Movie Database (IMDB [1]).
We designate two of these tables as private, while the remaining

four are public. Consequently, we generate synthetic tables only

for the two private tables and combine these synthetic tables with

the public tables into a single database for testing. We adopt the

MSCN and JOB query workloads from prior work [44] and extract

subsets of 226 and 229 queries, respectively, that involve operations

over the two private tables. These subsets, named MSCN-226 and
JOB-229, serve as the query workloads for the Job-light dataset.

PrivLava [4] serves as the baseline for multi-relation synthesis.

Metrics. For the first research question, we evaluate 𝜆-way KLD to

measure data distribution similarity between original and synthetic

data. Specifically, following prior work [3], we enumerate all possi-

ble 𝜆-way marginals for each private relation, where 𝜆 ∈ {2, 3, 4}.
For each 𝜆-way marginal, we compute the KLD between the orig-

inal and synthetic tables. The 𝜆-way KLD is then obtained as the

average KLD across all 𝜆-way marginals for all private relations. To

prevent infinite KLD values, a small constant of 10
−10

is added to

each probability distribution. For the second research question re-

garding query runtime similarity, in addition to the Q-error metric,

we also use the query runtime discrepancy, which measures the av-

erage percentage difference in query runtime. For the third research

question, we report the time consumed for database synthesis.

Parameters. We set the default parameters of PrivBench as follows:

𝛼 = 0.5, 𝛽 = 10000, 𝛾 = 0.9, 𝛾1 = 0.5, 𝛾2 = 0.5. Then, the total

privacy budget 𝜖 is set to 3.2 by default, following the setting in the

SOTA work, PrivLava [4]. The setting of the number of iterations 𝐽

for RowSplit follows prior analysis [37]. Additionally, the baselines
PrivSyn, MST, PrivMRF, AIM, Exponential-PreFair, Greedy-PreFair,

DPGAN, and PrivLava only satisfy (𝜖, 𝛿)-DP, where the 𝛿 parameter

allows the privacy guarantee to be violated with a small probability.

We set 𝛿 = 10
−12

for all these baselines.

Environment. All experiments are implemented in Python and per-

formed on a Linux server with an Intel(R) Core(R) Silver i9-13900K

3.0GHz CPU, an NVIDIA GeForce RTX 4090 GPU, and 64GB RAM.

The DBMS we use to test query execution is PostgreSQL 15.2 with

default settings for all parameters. We accelerate matrix computa-

tion using the GPU for the computationally inefficient baselines

DPGAN, PrivMRF, and PrivLava.



Table 3: Performance of data synthesis methods on the Adult dataset with the SAM-1000 query workload.

Model KLD Q-error Query runtime discrepancy (%) Synthesis time (s)
2-way 3-way 4-way Mean Median 75th MAX Mean Median 75th MAX Learning Inference

PrivSyn 13.01 14.68 15.03 2.56 1.30 1.60 22.79 8.76 5.86 13.83 47.12 72.61 10.59

PrivBayes 10.37 12.64 13.74 1.41 1.31 1.55 3.45 9.67 3.71 13.95 95.82 12.58 5.32

AIM 7.75 10.13 11.63 1.34 1.24 1.50 2.98 40.60 39.48 41.97 77.04 1865 144.17

DataSynthesizer 6.92 9.84 11.94 1.40 1.26 1.58 3.55 8.36 3.08 11.09 62.42 0.12 0.51

MST 5.24 7.07 8.53 1.38 1.24 1.52 5.71 14.73 14.47 16.57 35.34 178.80 0.11

Exponential-PreFair 5.12 6.98 8.48 1.43 1.30 1.61 7.2 18.50 17.93 20.23 37.78 1736 0.14

Greedy-PreFair 4.73 6.52 8.02 1.44 1.29 1.60 17.16 4.69 3.73 6.21 26.54 180.33 0.10
DPGAN 4.56 6.68 8.55 1.37 1.27 1.52 3.53 8.18 6.28 10.77 57.68 746.53 0.49

PrivMRF (PrivLava) 4.55 6.29 7.79 1.38 1.25 1.52 4.19 3.11 2.61 4.29 21.6 1703 41.36

PrivBench 1.71 2.79 4.05 1.40 1.25 1.56 7.78 1.84 1.48 2.38 12.96 2.35 0.13

Table 4: Performance of database synthesis methods on the California dataset with the California-400 query workload.

Model
2-way KLD 3-way KLD 3-way KLD

Privacy budget 𝜖 Privacy budget 𝜖 Privacy budget 𝜖
0.1 0.2 0.4 0.8 1.6 3.2 0.1 0.2 0.4 0.8 1.6 3.2 0.1 0.2 0.4 0.8 1.6 3.2

PrivLava 2.30 1.28 1.03 0.93 0.88 0.88 3.93 2.21 1.77 1.56 1.48 1.46 5.50 3.20 2.59 2.27 2.14 2.09

PrivBench 0.87 0.77 0.69 0.63 0.60 0.58 1.85 1.74 1.62 1.54 1.51 1.50 2.94 2.84 2.67 2.58 2.56 2.55

Model
Q-error Query runtime discrepancy (%) Synthesis time (s)

Privacy budget 𝜖 Privacy budget 𝜖 Learning Inference0.1 0.2 0.4 0.8 1.6 3.2 0.1 0.2 0.4 0.8 1.6 3.2
PrivLava 791.15 66.46 8.31 2.26 1.45 1.33 5.20 4.10 3.83 3.05 2.88 3.18 1520 26013

PrivBench 26.07 5.57 7.17 5.11 5.18 5.18 5.70 5.34 4.59 4.18 4.26 4.29 38.31 4.92

Table 5: Performance of database synthesis methods on the JOB-light dataset with the JOB-229 and MSCN-226 query workloads.

Model 2-way KLD Q-error Query runtime discrepancy (%) Synthesis time
JOB-229 MSCN-226 JOB-229 MSCN-226 Learning Inference

PrivLava 5.40 152.05 34.52 32.77 35.47 8101 18104

PrivBench 3.16 3.33 11.32 20.10 13.24 40.72 30.22

Model

Q-error
JOB-229 MSCN-226

Cardinality No. joins Cardinality No. joins
Low Med. High 1 2 3 4 Low Med. High 1 2

PrivLava 421.59 13.80 22.69 8.73 15.79 74.49 1827.51 84.43 9.04 10.43 23.21 39.59

PrivBench 4.81 1.67 3.55 3.31 2.96 3.68 4.51 29.39 2.09 2.62 22.53 6.30

6.2 Evaluation on Distribution Similarity

Single-relation synthesis. Table 3 shows the results on the Adult

dataset. We can see that for different values of 𝜆, PrivBench per-

forms significantly better than all baselines on the 𝜆-way KLD

metric. This indicates that PrivBench can synthesize single-table

data with a higher fidelity of data distribution.

Multi-relation synthesis. Tables 4 and 5 compare multi-relation data-

base synthesis methods on the California and JOB-light datasets.

We can observe that in various cases, the performance of PrivBench

in terms of KLD is comparable to or even better than that of the

SOTA method PrivLava. Moreover, as shown in Table 4, as the pri-

vacy budget decreases, the deterioration trend of the KLD metric

for PrivBench is more moderate compared to PrivLava. This indi-

cates that PrivBench has a greater advantage in scenarios where the

original data is highly sensitive or data sharing is strictly restricted,

resulting in a tiny privacy budget.

6.3 Evaluation on Query Runtime Similarity

Single-relation synthesis. For the Adult dataset, as shown in Table 3,

on Q-error-related metrics, both PrivBench and the SOTA methods

perform exceptionally well. However, in terms of query runtime

discrepancy, PrivBench significantly outperforms them. This indi-

cates that the single-table benchmarks generated by PrivBench can

better preserve similarity in query runtime performance.

Multi-relation synthesis. Table 4 presents the Q-error and runtime

discrepancy for PrivBench and PrivLava under different privacy

budgets for the California dataset. Similar to the case with the KLD

metric, PrivBench underperforms compared to PrivLava on the Q-

error metric when the privacy budget is relatively large. However,

as the privacy budget decreases, PrivLava’s Q-error performance

deteriorates rapidly, while PrivBench remains relatively stable and

significantly surpasses PrivLava when the privacy budget is very

limited. This demonstrates PrivBench’s robustness in data-sensitive



scenarios. Additionally, PrivBench and PrivLava both perform excel-

lently in query runtime discrepancy, with no significant difference

between them.

For the JOB-light dataset, we present the performance of the two

synthesis methods under different types of queries in Table 5. Specif-

ically, the JOB-229 and MSCN-226 query workloads are divided

into three groups based on query cardinality levels: low, medium,

and high. The results indicate that PrivBench achieves consistently

lower Q-error across all cardinality levels. When the cardinality

level is low, PrivLava’s Q-error deteriorates significantly, whereas

PrivBench performs markedly better than PrivLava. Moreover, the

queries are also categorized based on the number of joins in Table

5. As the number of joins increases, the Q-error of PrivLava can

become extremely large, while that of PrivBench remains low. This

suggests that PrivBench may perform better on enterprise-level

databases with complex internal dependencies among tables.

6.4 Evaluation on Synthesis Time

Single-relation synthesis. We report the time required to synthesize

the Adult dataset in Table 3. The synthesis time can be divided

into the learning time needed to build the synthesis model and

the inference time required to sample data from the model. In

terms of the overall synthesis time, PrivBench outperforms all the

baselines. Among them, PrivMRF and DPGAN require extensive

matrix computations and even utilize the GPU to accelerate these

operations, yet they still require a substantial amount of time to

train the data synthesis models. In contrast, PrivBench ensures high

fidelity of synthetic data in terms of data distribution and query

runtime performance, while requiring only minimal time for model

learning and inference. This suggests that PrivBench can effectively

adapt to frequent benchmark updates and even support real-time,

high-fidelity benchmark releases.

Multi-relation synthesis. As shown in Tables 4 and 5, PrivBench

remains highly efficient in synthesizing multi-table databases, with

a significantly lower time cost than PrivLava. Note that in our

experiment, PrivLava also employs the GPU to greatly accelerate its

model learning and inference, while PrivBench relies solely on CPU

computation. Although PrivBench requires traversing leaf nodes

to construct fanout tables, the workload of fanout construction is

light, and the number of leaf nodes is linear to both the number of

records and attributes. Consequently, modeling primary-foreign

key dependencies among tables is also efficient in PrivBench.

7 RELATEDWORK
DP-based data synthesis. With the growing awareness of user pri-

vacy and the introduction of data protection regulations worldwide,

DP-based data synthesis has gained increasing attention in recent

years [3–5, 10, 15, 24, 26–30, 32, 34, 36, 39, 41–43, 46, 47]. The vast

majority of existing work focuses on enhancing the fidelity of the

synthetic data in data distribution while overlooking the fidelity

in query runtime performance, making them less promising for

benchmark publishing scenarios. Among them, deep learning-based

methods [5, 10, 15, 26, 27, 39, 43] train neural networks to fit the

joint distribution of the original data. Query workload-based meth-

ods [28, 29, 41] optimize some given queries’ accuracy, rather than

their runtime performance, to learn a workload-optimal data distri-

bution. Graphical methods [3, 4, 30, 32, 34, 46] achieve high-fidelity

data distribution by learning the marginal distribution of the data

through graphical models, but these efforts still neglect query run-

time performance. To the best of our knowledge, PrivBench is the

first differentially private data synthesis framework that simultane-

ously optimizes fidelity in both data distribution and query runtime.

Additionally, apart from the recent SOTA, PrivLava [4], PrivBench

is the only framework that can synthesize multi-relation databases

while ensuring database-level DP.

SPN-based data management. SPNs [33], which excel in represent-

ing complex dependencies and data distributions, have been em-

ployed for various data analysis tasks, such as image processing and

natural language processing [35]. However, the application of SPNs

in data management tasks remains underdeveloped. Hilprecht et

al. [13] have employed SPNs for approximate query processing and

cardinality estimation. Recently, Kroes et al. [21] proposed the first

SPN-based data synthesis method. However, unlike PrivBench, their

approach only supports single-table databases and does not pro-

vide privacy guarantees. To the best of our knowledge, PrivBench

provides the first differentially private method for SPN construc-

tion. Moreover, Treiber [40] proposed an SPN inference framework

based on secure multiparty computation, called CryptoSPN, which

ensures that parties with distributed data can compute query results

without sharing data. However, since CryptoSPN does not protect

the privacy of query results, attackers may still infer the original

data from the query results, which compromises privacy.

8 CONCLUSION
In this paper, we delve into the domain of synthesizing databases

that preserve privacy for benchmark publishing. Our focus is on

creating a database that upholds DP while ensuring that the perfor-

mance of query workloads on the synthesized data closely aligns

with the original data. We propose PrivBench, an innovative syn-

thesis framework designed to generate high-fidelity data while

ensuring robust privacy protection. PrivBench utilizes SPNs at its

core to segment and sample data from SPN leaf nodes and conducts

subsequent operations on these nodes to ensure privacy preser-

vation. It allows users to adjust the granularity of SPN partitions

and determine privacy budgets through parameters, crucial for

customizing levels of privacy preservation. The data synthesis al-

gorithm is proven to uphold DP. Experimental results highlight

PrivBench’s capability to create data that not onlymaintains privacy

but also demonstrates high query performance fidelity, showcasing

improvements in query runtime discrepancy, query cardinality er-

ror, and KLD over alternative approaches. The promising research

directions for future work are twofold: (i) identifying the optimal

privacy budget allocation scheme and (ii) generating data and query

workloads simultaneously.
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